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Abstract

Industrial processes often use advanced control algo-
rithms such as Model Predictive Control (MPC) and Ma-
chine Learning (ML) to improve performance and efficiency.
However, deploying these algorithms can be challenging,
particularly when they require significant computational re-
sources and involve complex communication protocols be-
tween different control system components. To address these
challenges, we showcase an approach leveraging industrial
edge technologies to deploy such algorithms. An edge de-
vice is a compact and powerful computing device placed at
the network’s edge, close to the process control. It executes
the algorithms without extensive communication with other
control system components, thus reducing latency and load
on the central control system. We also employ an analytics
function platform to manage the life cycle of the algorithms,
including modifications and replacements, without disrupt-
ing the industrial process.

Furthermore, we demonstrate a use case where an MPC
algorithm is run on an edge device to control a Heating,
Ventilation, and Air Conditioning (HVAC) system. An edge
device running the algorithm can analyze data from temper-
ature sensors, perform complex calculations, and adjust the
operation of the HVAC system accordingly. In summary, our
approach of utilizing edge technologies enables us to over-
come the limitations of traditional approaches to deploying
advanced control algorithms in industrial settings, providing
more intelligent and efficient control of industrial processes.

INTRODUCTION

The latest advances in Al and ML, along with time-tested
methods like MPC, offer new ways to enhance the function-
ality of industrial control systems [1]. For instance, these
techniques can improve system reliability through anomaly
detection, enable energy-efficient operation of complex in-
dustrial processes, and extend equipment life through predic-
tive maintenance. Nevertheless, enhancing industrial control
systems through such techniques poses several challenges.

One significant challenge is ensuring that the core pro-
cesses of the system and the algorithms operate indepen-
dently and do not interfere with one another. This process
independence ensures that the demands of complex algo-
rithms do not jeopardize the safe operation of the core pro-
cess and overburden its resources. Also, deploying complex
algorithms on the existing control infrastructure may only
be possible if specialized hardware components like GPUs
or Al processors are available. These components were rela-
tively uncommon in industrial control setups until recently.

System Modelling

Artificial Intelligence & Machine Learning

However, new control hardware, such as multi-processor
PLCs and Al expansion cards, have emerged, making this
deployment possible.

Another challenge is the notable disparities between the
focus areas of control engineers and data scientists when
devising control systems. Control engineers primarily con-
centrate on industrial communication protocols, control de-
vices, PLC programming, and SCADA development. In
contrast, data scientists and software engineers focus on
creating new control strategies using Python or C++ and
utilize software development tools like package managers
and containers. New computing paradigms tailored to indus-
trial control systems have been developed that bridge this
divide and integrate information technology (IT) tools into
operational technology (OT). Examples include integrating
control systems with Cloud computing, High-Performance
Computing (HPC), and Edge computing.

This article mainly focuses on solutions that address these
challenges and provide local intelligence to a control system,
i.e., intelligence close to the process, allowing faster analysis
of streamed data and lightening the load on the different
layers of the control system by reducing network latency
and traffic. We start by comparing various techniques for
leveraging local intelligence. We emphasize Industrial Edge
Computing as an emerging solution that provides benefits
such as separation of concern, simplification of algorithm
development, and easy application lifecycle management. Fi-
nally, we will share insights from implementing an advanced
optimization algorithm on state-of-the-art edge technologies
and validating its use in a real-world setting at CERN.

LEVERAGING INTELLIGENCE TO
INDUSTRIAL CONTROL SYSTEMS

In recent years, the capability to deliver intelligence close
to industrial processes has progressed from conventional
setups such as bare-metal Industrial PCs to more advanced
systems like multi-process controllers and edge technologies.
Some of these setups are outlined below.

e Multi-process controllers: PLC vendors have ac-
knowledged developers’ needs to program control com-
ponents in languages beyond the IEC 61131-3 stan-
dard [2], adopting higher-level languages like C++ and
Python. For instance, the Siemens S7-1518 Multi-
Functional Platform (MFP) has a Linux OS alongside
its standard PLC OS that primarily supports C++. Com-
munication between the OSs is via an Ethernet virtual
switch, eliminating additional hardware and separating
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Table 1: Comparison of Different Technologies to Deploy Advanced Control Algorithms

Criteria IPC Edge AI PLC Extensions Multi-process
controllers
Form factor Small box PC to Same as IPC: E.g. PLC Module: E.g. Large PLC: E.g.

large rack PC IPC427E

57 x 43 x 18 (cm)

27 x 14 x 6 (cm)

S7-1500 TM NPU
16 x 14 x 4 (cm)

CPU 1518 MFP
18 x 15 x 13 (cm)

Device & software  Manual setup via K8, Dedicated edge Managed via TIA Manual setup via

management Compse etc. management system  portal or SCADA Ansible

Connectivity Ethernet, Serial; Ethernet, S7, OPC Connectivity via TCP for CPU, OPC
Extendable with /O UA, PROFINET etc. PLC; Additionally UA for plant
modules USB, Ethernet etc.

IT tools & Unrestricted Linux-containerized MicroPython C++, Python

languages apps

PLC execution from external code through container-
ization.

* Dedicated AI PLC expansion cards: Another notice-
able trend is a shift towards augmenting standard PLCs
with specialized extension modules like SIMATIC ET
200MP equipped with dedicated Intel Myriad X chips
[3] for real-time analytics and Al tasks. They connect
to the PLC via a backplane bus for rapid communica-
tion. While they integrate well with existing industrial
setups, they have several drawbacks, including limited
programmability in environments like MicroPython [4]
and constraints on Al model architectures.

* Bare-metal IPCs: IPCs have been used in industrial
control for several decades. More robust than conven-
tional PCs, they withstand harsh conditions with com-
ponents resilient to shock, vibration, and extreme tem-
peratures. They’re expandable, with many slots and
compatibility with modules and peripherals. For in-
stance, Siemens SIMATIC IPC520A Tensorbox PC [5]
is optimized for Al with its NVIDIA GPUs. IPCs also
prioritize security with features like hardware security
modules and secure boot processes, protecting against
cyber threats and safeguarding critical data.

¢ Industrial Edge Technologies: Building on IPC, an
industrial edge constitutes a hardware and software port-
folio to facilitate edge computing in industrial settings.
In essence, it situates computation and data storage
closer to the network’s edge—near the source of data
generation. It inherits all the advantages of an IPC
and augments it with a management system that or-
chestrates various devices for software installation and
consolidates the data. Since it is our primary focus, we
present a more comprehensive discussion in a section
on Industrial Edge Ecosystem.

Functional Comparison of Different Solutions

When selecting the best technology to deploy intelligence
close to the process, besides cost and performance, other
unctional criteria must be considered, namely:

f
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1. Form factor: Control engineers generally prefer config-
urations where the additional computing infrastructure
for Al or MPC applications can be installed and pow-
ered from the same rack that contains the rest of the
control equipment. This setup allows connections to
devices such as PLCs and sensors over a local network.

2. Device management: Managing and monitoring is
necessary for a large and complex environment like
CERN with thousands of control devices and applica-
tions. When adding new devices to run the complex
algorithms, it is vital to monitor the condition of these
additional devices and manage the lifecycle of the al-
gorithms.

3. Connectivity: Ease of integration with existing control
equipment is crucial. Having devices read data from
controllers or store data in the SCADA system with
minimal configuration is preferable.

4. Support for IT tools and languages: Since Python
has become the de facto programming language for Al
and ML applications, deploying Python code or running
Jupyter notebooks directly on the devices is beneficial.
Moreover, software containerization support can make
application deployment and scaling easy.

Table 1 summarizes the key attributes of various technolo-
gies according to the criteria discussed above. The analysis
points toward edge technology as a favorable choice for our
use cases, attributing to its multifaceted advantages. Edge
devices, with form factors varying from smaller than a PLC
to desktop PC size, provide notable adaptability and inte-
gration benefits compared to alternatives like multi-process
controllers and Al expansion cards. They execute complex
algorithms without interfering with primary control pro-
cesses, and their modular design permits modifications to
the algorithms without operational disruption. Their support
for modern programming languages, notably Python, and
standard IT tools like containers favor Data scientists and
software engineers. Additionally, edge platforms have ro-
bust device management capabilities and support industrial
protocols for bidirectional connectivity.
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The subsequent section delves into edge ecosystem com-
ponents and presents a case study illustrating the practical
application of industrial edge in deploying advanced control
strategies.

INDUSTRIAL EDGE ECOSYSTEM

The Industrial Edge Ecosystem serves as a foundation for
near real-time data processing and decision-making closer to
the source of data generation. Several components constitute
the ecosystem as illustrated in Fig. 1: Edge Devices and
applications on the field level, management and orchestration
of devices and applications, and continuous processes to
manage the life cycle of analytics applications.

Edge Devices

Edge devices act as a bridge, linking the operational tech-
nology that interfaces with physical equipment, such as con-
trollers and field devices, to the information technology sys-
tems responsible for managing digital data. Their primary
role is facilitating immediate data processing, reducing la-
tency, improving reliability, and limiting data transfer to
centralized data centers.

soe

Online Storage

Marketplace

Proprietary Edge
Apps

Custom Edge
Apps

l Transfer apps to the local network

Orchestration

Edge management

Device
management

Application
Catalog

Configuration
Service

Device Onboarding & l

App Installation &
Management

Configuration

&

Containerization

Edge device 1 Edge device 2

Connectors Analytics Diagnostics

Storage Dashboard Ul/Ux

Figure 1: Industrial Edge ecosystem.

Edge Applications

Edge applications are software modules specifically de-
signed to run on Edge devices, often performing particular
tasks like data pre-processing, analytics, or control opera-
tions. They benefit from the local computing power, allow-
ing them to execute tasks more rapidly than offloading them
to a centralized cloud. Some examples of edge applications
include - PLC connectors, which exchange data with the
PLC, and Data brokers, which share this data with other
applications. The Edge applications typically run in a con-
tainerized environment, and devices have an orchestration
layer to manage these application containers.
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Analytics Function Platform

Analytics function platform refers to a set of services tai-
lored to edge computing that combines data analysis and
software engineering capabilities. It automates the algorithm
life-cycle, including model training, deployment, and moni-
toring, which is especially important in Edge environments.
It ensures that ML and MPC algorithms can be seamlessly
integrated into the existing operations, providing a pathway
for continuous improvement and real-time adaptability.

Edge Management

Managing the Edge devices requires specialized software
for operations, deployments, and resource allocations. They
offer centralized management capabilities, allowing seam-
less deployment, updating, and scaling of edge applications
and services across many Edge devices. They also provide
an interface to onboard and manage edge devices in the net-
work, which ensures all devices work together and adhere
to the operational parameters.

Online Marketplace

The edge applications are typically developed by vendors
or third-party developers and distributed via an online mar-
ketplace for edge applications. The users can purchase the
edge applications via such platforms and transfer them to a
local edge management system. They can then install the
edge applications on the onboarded edge devices.

CASE STUDY: MODEL PREDICTIVE
CONTROL ON EDGE

Here, we demonstrate how to use an edge ecosystem to en-
hance a control system by deploying a state-of-the-art MPC
algorithm close to the control process. MPC is an advanced
control strategy that employs optimization algorithms to
identify the optimal control inputs while adhering to pre-
defined constraints. For example, in the context of HVAC
systems, MPC aims to find the ideal operational settings
for fans, heaters, and coolers to maintain a desired temper-
ature range. It uses a mathematical model, often a set of
differential equations, to forecast future states of the system
and minimizes a particular objective function, such as the
energy costs of running the fans and heaters. Constraints
may include system conditions and equipment limitations,
such as desired temperature ranges or maximum fan speeds.
Due to its predictive capabilities, MPC can manage these
constraints and adapt to changing conditions. It offers a
significant advantage over less dynamic strategies like PID
control, which lack predictive features.

Building on these capabilities, an MPC algorithm [6] was
developed to manage Air Handling Units at CERN, high-
lighting its potential in industrial environments. In our study,
we adapt this MPC algorithm to deploy it on a Siemens indus-
trial edge device, IPC427E, bringing optimization benefits
closer to the source of data generation. Moreover, we dis-
cuss an experiment where we validate the feasibility and
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efficiency of running the algorithm within an industrial edge
ecosystem.

Deployment
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Figure 2: Deployment of MPC on Edge.

Several key aspects of deploying the MPC algorithm on
an Edge device are illustrated in Fig. 2 and outlined here.

* PLC-Edge communication: Two applications, namely
the S7 connector and IE Databus, provide a data com-
munication channel with a Siemens S7-400 PLC, trans-
ferring data stored in PLC data blocks back and forth
with the edge applications. The connector has industrial
S7 protocol drivers underneath, facilitating this PLC-
Edge communication. The IE Databus is an MQTT
broker that facilitates data exchange between the algo-
rithm and edge applications using the MQTT protocol.
It publishes the data to any subscribing application,
thus allowing for topic-specific data routing. The MPC
algorithm can read the temperature sensor data and
output the optimal control signals for fan speed and
dampers via these two edge applications. The modular
approach for data communication enables seamless co-
ordination between the PLC and the edge ecosystem,
spanning multiple devices and applications.

* Execution of Python Code: Python functions run on
an edge device via a streamlined operational process
managed through an analytics function platform de-
signed for edge computing. The platform handles code

= TUPDP102
()
796

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUPDP102

deployment, process monitoring, and function updates.
We package and build the MPC algorithm into an exe-
cutable function that can be invoked by sending signals
via the MQTT protocol. Moreover, we log significant
operational data through these functions, such as run-
ning times, control inputs, and system states, to a stor-
age service. This data can be accessed through the user
interface for troubleshooting or further optimization.

» User interaction: A Web User Interface facilitates
user interaction with the MPC algorithm. We develop
the User Interface (UI) using IE Flow Creator, based
on Node-RED [7], a flow-based programming tool that
runs directly on the Edge device. Flow Creator provides
a browser-based editor that makes it simple to wire to-
gether nodes, including a wide range of input and output
nodes catering to various data protocols. Each node
is essentially a reusable javascript code snippet, and
the combination of nodes forms a web UI, using which
the operators can modify control inputs, view system
states, and even tweak algorithmic parameters or con-
straints, all without requiring direct interaction with the
underlying code. The flexibility and user-friendliness
of Flow Creator make it a fitting choice for enabling
a dynamic interaction between the operators and the
MPC algorithm, thereby improving both transparency
and control in operations.

To conclude, deploying complex algorithms like MPC
within an Industrial Edge offers distinct advantages over
options like centralized servers due to these features of the
edge ecosystem. Modular interface applications such as S7
connectors allow us to set up communication with PLCs and
other devices easily. Development tools like Flow Creator en-
able us to test and fine-tune algorithms rapidly. Furthermore,
the analytics function platform streamlines the deployment
process, ensuring the algorithm can be updated and rolled
out efficiently across multiple devices. This combination
of easy development and deployment accelerates improve-
ments in the control process, making the edge a favorable
choice over other options.

Validating Usage in the CERN Industrial Control
System.

With the abovementioned steps, we can deploy a prototyp-
ical edge application running an MPC algorithm. However,
we must fulfill specific performance requirements to deploy
it for optimizing an actual HVAC control process. For ex-
ample, we need to verify that the execution times are short
enough for the process to run smoothly without interruptions.
Transitioning from a prototype to real-world deployment re-
quires rigorous performance validation studies. Confirming
that the MPC algorithm running on an edge device identifies
optimal solutions for all the possible input scenarios is cru-
cial. In instances of extended execution times, it’s essential
to pinpoint the problematic input sets so that the edge de-
vice can delegate the control to the operator or an alternate
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Figure 3: Plots summarizing the running time of the MPC
algorithm.

controller. We employ a comprehensive validation process
to rigorously evaluate the edge device’s performance under
these conditions.

In our validation study, we select a uniform set of close to
28,000 inputs that adhere to the model’s constraints and then
measure the time required for the MPC algorithm to process
each input profile. Recognizing that each MPC algorithm
instance is independent of different inputs, we leverage paral-
lel execution to compute these running times efficiently. For
this purpose, we utilize Simple Linux Utility for Resource
Management (SLURM) [8] workload management on an
HPC cluster, ensuring a thorough exploration of the feasible
input space. SLURM is a widely used workload manager
favored by many TOP500 supercomputers. It enables the
efficient scheduling of jobs and resource allocation through a
queuing system, allowing for task prioritization and utilizing
available computing power to its fullest extent. Its scalability
and flexibility make it ideal for comprehensively exploring
the feasible input space in our experiment. Notably, the HPC
environment is configured to mirror the conditions of the
Edge device, thereby ensuring that our performance data
remains applicable to real-world operational settings.

Analysis

Following the execution of the algorithm under various
conditions, we perform a statistical analysis of the running
times to gain insights into the system’s performance. The
initial phase of this analysis involves the calculation of fun-
damental statistics, including mean, median, standard devia-
tion, and other pertinent statistical metrics. These calcula-
tions serve to provide an initial snapshot of the algorithm’s
performance. The values are listed in Table 2. Notably, for
95 percent of the inputs, the running times were less than
17 seconds. Subsequently, we visualize the Kernel Density
Estimation applied to the sample data, as demonstrated in
the accompanying plot in Fig. 3. Together, these steps show-
case the algorithm’s adaptability to diverse input scenarios,
underscoring its versatility when deployed on edge devices.

System Modelling

Artificial Intelligence & Machine Learning

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-TUPDP102

Moreover, we conduct an outlier analysis on the running
time data points to pinpoint potential bottlenecks, signifying
input conditions associated with longer-than-desired run-
ning times. The second distribution plot in Fig. 3 visually
represents these outliers, marking them in red for easy iden-
tification.

These validation studies establish the groundwork for the
practical viability of our edge-deployed MPC algorithm in
real-world industrial settings and provide invaluable insights
for future optimizations. For instance, we can implement
a warm start mode to expedite execution and reduce run-
ning times. Exploring alternative numerical solvers, such as
WORHP [9] or SNOPT, represents another avenue for po-
tential improvement. Additionally, we can investigate using
dedicated computing resources, such as GPUs, to parallelize
specific tasks within the MPC algorithm, further enhancing
its efficiency.

Table 2: Summary of Statistical Analysis

Statistic Value (Seconds)
Mean 7.65
Standard Deviation 6.91
Median 6.18
95th percentile 16.10

CONCLUSIONS AND OUTLOOK

In this paper, we explored the use of edge technologies
to deploy advanced control algorithms close to industrial
processes. Through a detailed comparative analysis, we
identified the unique benefits of industrial edge compared
to other solutions, notably scalability and simplified deploy-
ment. We presented the various components that make up
the edge ecosystem, including the connector application
that streamlines communication among control devices and

the analytics function platform that manages the lifecycle

of the algorithms. Moreover, using the Siemens industrial
platform as a case study, we illustrated a practical applica-
tion by outlining the steps to deploy a cutting-edge MPC
algorithm for HVAC system optimization. Finally, we con-
ducted validation studies on an HPC cluster to substantiate
our findings. We confirmed that the Siemens industrial edge
platform meets operational requirements under various sys-
tem conditions.

Based on our comprehensive studies, we recommend the
adoption of industrial edge technologies as a means to aug-
ment industrial control systems with advanced control strate-
gies.
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