
WEB APPLICATION PACKAGING – DEPLOYING WEB APPLICATIONS
AS TRADITIONAL DESKTOP APPLICATIONS

IN CERN’S CONTROL CENTRE
M. von Hohenbühel∗, S. Deghaye, E. Galatas, E. Matli, E. Roux

CERN, Geneva, Switzerland

Abstract
Web applications are becoming increasingly performant

and are now capable, in many cases, of replacing traditional
desktop applications. There is also a user demand for web-
based applications, surely linked to their modern look &
feel, their ease of access, and the overall familiarity of the
users with web applications due to their pervasive nature.
However, when it comes to a Controls environment, the lim-
itations caused by the fact that web applications run inside a
web browser are often seen as a major disadvantage when
compared to native desktop applications. In addition, applic-
ations deployed in CERN’s Control Centre (CCC) are tightly
integrated with the control system and use a CERN-specific
launcher and manager that does not easily integrate with web
browsers. This paper presents an analysis of the approaches
that have been considered for deploying web applications
and integrating them with CERN’s control system. The im-
plications on the development process, the IT infrastructure,
the deployment methods as well as the performance impact
on the resources of the target computers are also discussed.

INTRODUCTION
Over the last decade, the use of web-applications has

become increasingly prominent and CERNs Controls applic-
ations have not escaped this trend. Even if nowadays, web
applications are still a relative minority in CERN’s Control
Centre (CCC), it is envisaged that they could represent more
than 50% of the applications used in the control rooms within
the next 5-10 years. The workstations deployed in CERNs
control rooms are typically computers connected to two or
three displays as depicted in Fig. 1, and are responsible for
running several controls applications concurrently. Most
of these applications require access to special data like the
dynamic beam configurations orchestrated by the Controls
Timing system. As such, the applications are typically con-
trolled through a CERN-made tool, the Common Console
Manager (CCM) [1].

The CCM is used to launch and manage all the applic-
ations, keeping them in the correct context and providing
them with all necessary information. In a nutshell, the CCM
allows the operators to run their applications, control their
screen positions, and minimise/maximise them with a feature
comparable to virtual desktops, depending on which acceler-
∗ maximilian.freiherr.von.hohenbuehel@cern.ch,

stephane.deghaye@cern.ch,
epameinondas.galatas@cern.ch,
emanuele.matli@cern.ch,
eric.roux@cern.ch

ator beam they want to control or observe. The introduction
of web-applications caused a few integration issues with the
CCM, ranging from inconsistent window titles, dependency
on browser support, impact on the computing resouces, and
more.

One possible solution to this problem is to transform the
web-applications into desktop applications. This paper re-
ports on the work done to compare the industry standard
called ’Electron’ with a very new, but very promising frame-
work called ’Tauri’, which focuses more on resource optim-
isation. In addition, studies on the performance of these
solutions compared with a normal web browser running the
current web-applications are also reported.

Figure 1: Workstations in the CCC.

PROOF OF CONCEPT PROJECT
A Proof of Concept (PoC) project was launched to select

the best tool for web application deployment in the CERN
Control Centre (CCC), and to gain a practical understand-
ing of the impact of these solutions on the CCC Technical
Console (TC) computers. As such, the PoC had 2 main
objectives:

1. Create a working prototype of a representative web
application, running as a desktop application (i.e. no
browser), using several packaging solutions.

2. Run various benchmarks to compare the performance,
and the load on the TCs, with respect to that of a con-
ventional web browser.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP090

TUPDP090

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

746

Software

User Interfaces & User Experience



Two solutions were studied, Electron [2], the de facto op-
tion, and Tauri [3]. At the time of writing, a complete evalu-
ation of a third solution, Wails [4], was not possible due to
the product maturity not yet reaching expectations. CERNs
Web Rapid Application Platform application (WRAP) [5]
was selected as the most relevant application to be used for
the PoC work. Figure 2 shows a screenshot of a WRAP
application as it was configured for the tests, with five charts
connected to different data sources, asynchronously provid-
ing live updates.

Figure 2: WRAP-based testing application (live updates).

Before presenting the benchmark results, the next section
introduces the packaging frameworks, and the preparatory
work needed to use them.

USING THE PACKAGING FRAMEWORKS
Electron

Electron is a mature packaging framework that exists since
2013. It is widely used in industry, offers a lot of support, and
is thoroughly tested. The core concept of Electron is that it
provides a Chromium web browser [6], a Node.js server [7],
and the actual target web-application to be deployed, in a
packaged format that can be launched from any PC.

Electron provides a lot of versatility when it comes to
adding functionality. It provides the ability to intercept all
requests, which allows for a way to add headers, redirect
them or provide custom certificate validation (see section
Self-signed certificates). Furthermore, it gives access to
a variety of OS-level features, normally not possible from
within a web browser. These range from managing windows,
to having inter-process-communication (IPC), and other fea-
tures like full screen. From a technology perspective, Elec-
tron uses JavaScript, which is already used at CERN for the
web applications themselves. As such, Electron does not
add any extra burden in terms of an additional technology.

Tauri
Tauri is a much more recent framework, with its first

release being made in June 2022. As such, in terms of the
PoC work, it was expected that Tauri would be less well
tested and that certain issues would require CERN-specific
developments in order to move forwards. Nevertheless, Tauri
is a promising framework and it was considered well justified

Table 1: Comparison of File Sizes After Packaging

Application Size in MB Prerequisites
on target system

Wrap build 4.8
Electron AppImage 94 FUSE
Electron Binary 240+
Tauri AppImage 68 FUSE, WebKit
Tauri Binary 13 WebKit, glibc

to gain practical experience. The core concept of Tauri is
focused on efficiency and security. It is fully written in
Rust [8] and, with the use of WebKit [9], it relies on the
OS-provided browsers and shared libraries. As such, this
allows Tauri to build into a tiny binary.

The evolution plans for Tauri could raise concerns, as
some factors could affect implementation in the CCC at
CERN. Most notably, the Tauri developers are considering
moving away from WebKit in favour of Servo [10], a fully
Rust-based browser, or the Chromium web-engine. While
this change should greatly improve the performance of Tauri,
there have not yet been any prototypes and there is currently
no prediction of when this change may happen. In the best
case, this change will not affect the implementation at all,
but it might require to re-develop the packaging. In addition,
since Tauri is written in Rust, all interactions and plugins
require the CERN development team to be capable of writing
and maintaining Rust code, which is currently not used.

Packaging Formats
In general, packaging a web-application is not straight-

forward, since it requires some form of a web-engine on the
target device. This challenge has been solved by different
packaging formats.

AppImage is a format that is generally known to be
able to be run on any Linux distribution [11]. It requires few
pre-installed libraries on the target system; Only FUSE [12]
and the correct glibc version have to be installed. Due to
compatibility issues, one must install the exact or newer
versions that were used at build time on the target operating
system. This format seems very promising since CERN’s
Controls computers are running Linux.

Binary is a format that is provided by the packaging
frameworks themselves. In general, it contains the pre-
compiled code and does not include any of the required
libraries or external dependencies like the AppImage format.

Table 1, shows the results of trying both formats and the
corresponding final packaged application sizes. As shown,
the final build of the WRAP web-application takes very little
space. In contrast, any AppImage file is expected to be large,
since it embeds a copy of all necessary dependencies and
libraries. Compared to the Tauri AppImage, the Electron
AppImage file is a lot larger, due to the fact that it includes
a local copy of the Chromium browser.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP090

Software

User Interfaces & User Experience

TUPDP090

747

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Although Electron cannot be compiled into a binary like
Tauri, there is an option to download a pre-made Electron bin-
ary executable. This executable can then be combined with
the required dependencies, consisting of Chromium, Node.js,
and the target web-application, to create a deployable folder
that resembles a non-compressed AppImage solution. This
brings support for native options without any third-party
tools but comes with the cost of a very large resulting file
size. This large size and the manual build steps make this
a sub-optimal solution for the targeted use-case and it was
therefore not pursued further.

As mentioned earlier, Tauri is written in Rust and can be
compiled into a very small binary file. However, this comes
with a prerequisite to have several dependencies (WebKit
and libopengl) already installed on the target system. For
Red Hat Enterprise Linux 9 (RHEL9), used at CERN for
Controls services, the additional dependencies are less than
300 MB in size, and only need a single copy on the host in
question.

Third-party libraries exist to create an AppImage file
for Electron packaged applications. In the PoC, ”Electron
Forge” [13] was chosen, because it allows the required con-
figuration to be kept inside the existing web-application’s
”package.json” file, which avoids any additional complexity.
After optimization via the configuration options available,
it was possible to reduce the final AppImage size to 94MB,
compared to an initial image size of about 750MB when us-
ing the default configuration. Electron Forge also allows to
customize the build and output paths, which makes it easier
to integrate the creation of the AppImage file into the Git-
Lab CI/CD pipeline, used for all Controls web-application
developments.

Tauri comes with integrated build configuration and bund-
ling scripts and supports the same configuration options as
Electron Forge. However, to avoid incompatibility issues
with libraries and dependencies, the Tauri configuration
needs to take into account the specific target systems. This
means for multiple target systems, multiple Tauri configura-
tions are needed. For CERN Controls, this is not constrain-
ing as the same version of Linux is deployed on all Controls
computers.

Self-Signed Certificates
For all internal web products, CERN relies on self-signed

certificates, which means that CERN acts as its own Certi-
ficate Authority (CA). The CERN-internal use of HTTPS
is fully secure, but by default web browsers do not accept
self-signed certificates unless they have been installed as
being trusted on the local machine. As such, this requires
that end-users need to either install the CERN CA certific-
ate on their computer, or to accept an ’unsafe’ connection.
During the PoC implementation, this was problematic, since
the Electron and Tauri frameworks rely on having working
HTTPS connections with publicly-accepted certificates only.

To overcome this limitation, Electron provides a config-
uration flag which can be changed to accept insecure con-
nections. This was an easy solution that worked well. For

Tauri, and the CERN Controls use case, the workaround is
to write two custom plugins:

1. Firstly, a plugin is needed to replace the standard
HTTPS-client, with a custom version that allows in-
secure connections.

2. Since the above plug-in only covers the HTTP protocol,
and WRAP relies heavily on WebSocket communica-
tion for receiving live device data [14], a second plugin
for WebSocket Connections is required.

This approach was unappealing, since it requires extend-
ing Tauri with custom code, and having Rust knowledge to
do that, and then being faced with the associated long-term
maintenance. As a temporary solution, to move forward
with the PoC and bench-marking, it was decided to interface
the Tauri-based prototype directly to one of WRAP’s HTTP
server nodes, by bypassing the proxy layer providing HTTPS.
This solution is not viable for a final implementation, but
it makes no difference to the bench-mark results. Looking
further ahead, the plans are to move all Controls services
to run on Kubernetes clusters [15]. At that time, a switch
from self-signed certificates to the certificate provider ”Let’s
Encrypt” [16] is foreseen, which will properly resolve this
issue for the use of the packaging frameworks.

Accessing the Backend
Web applications are usually deployed on web servers,

which the client connects to, to download the frontend ap-
plication, which then runs in the client’s browser. Any sub-
sequent request for data is generated from the client and dir-
ected to the same server. The base path is therefore known
by the application and only relative URLs are needed to
access the resources on the server. Packaged applications
distribute the frontend part with the framework and run it
on a self hosted web server. For this reason, it needs to be
provided with the base URL in order to connect to the cor-
rect backend server. In addition, the WRAP development
process uses four different environments for development,
testing, provisioning and production, each hosted on sep-
arate servers. For the frameworks to successfully send the
requests to the correct servers, the corresponding base URL
has to be specified. This problem was solved by introducing
a variable that can be configured before each build and used
by an interceptor, taking care of all the networking aspects.
Since the interceptor is at the frontend application level, a
single implementation solves the issue for both Electron and
Tauri.

BENCHMARK PROCESS
Methodology

For the benchmark, a variety of different WRAP-based
applications were created to represent typical use-cases and
simulate different kinds of load. The metrics were gathered

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP090

TUPDP090

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

748

Software

User Interfaces & User Experience



using the Linux command ”top” [17]. Top provides a dy-
namic and interactive terminal interface that displays real-
time system resource utilization, prominently highlighting
CPU and memory measurements for both the overall system
and individual processes. The relevant metrics for the PoC
benchmarks are the memory usage, system-wide and from
the tracked processes, and the load on the CPU. It is difficult
to identify the exact resources that a process uses, but by
looking at the Residual Set Size (RSS), the real physical
memory consumption can be estimated. A script was de-
veloped to filter the monitored logs and produce CSV files,
which were then used to generate the graphs and the results
presented below. All measurements were conducted in a
controlled environment (i.e. same conditions and same pro-
cedure) that was monitored before each run to establish the
following baselines:

• The system with no processes running

• The CCM launched, but idle.

• The empty framework running.

• The framework running with WRAP’s landing screen
(no activity)

• The WRAP applications running.

Afterwards, the test application was launched with six
instances running in parallel. Having six instances running
simulates the real need of having many applications open at
the same time in the CCC, knowing that all of them have to
run smoothly.

Benchmark Results
Figure 3 shows memory usage for a series of tests per-

formed on different web engines, ranging from web browsers
(Chromium and Firefox) to the packaging solutions (Elec-
tron, Tauri AppImage, and Tauri Binary). It was clear that
Chromium was the best browser option in all tests. It stays
stable and only the addition of the WRAP charts, which
require a lot of rendering activity, increases the resource
consumption.

Figure 3: Benchmarks across various browsers.

Electron was generally stable with relatively low low
memory usage. However, the charts were somewhat poorly
handled, and when it comes to running multiple instances,
Electron showed that it is resource-hungry, as few resources
are shared between distinct Electron instances.

For Tauri, the generated Binary performed significantly
worse than the respective AppImage. This was surprising
and even the Tauri developers had no obvious explanation.
The only reasonable explanation so far, is that the depend-
encies injected inside the AppImage might have better effi-
ciency, since they are based on a different version, built on a
different system.

Looking in more detail at Tauri, as shown in Fig. 4, the
networking aspects do not consume much memory. The two
main bottlenecks are the parsing of the JSON values into
objects while passing them to the charts and the rendering
needed to show the live data. Both of which are handled by
the ’WebKit Web process’.

Figure 4: Tauri memory usage by main processes.

The CPU usage metrics gave interesting insights into the
rendering and data (de)serialization aspects. It is noticeable
that the Chromium-based applications (Chromium, Electron)
have a higher CPU usage than the others.

Looking at Fig. 5, it is clear that the number of subscrip-
tions has little impact on CPU, otherwise there would be
a constant CPU usage, meaning that the CPU spikes are
mainly due to the rendering.

Figure 5: Total CPU usage for 5 subscriptions.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP090

Software

User Interfaces & User Experience

TUPDP090

749

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 6 shows CPU usage for each framework whilst dis-
playing live heatmaps (i.e. 2D-array data) that were fully ini-
tialised with 10’000 values. As shown, this is CPU-intensive
and there are clear variations in load for the different pack-
aging solutions and browsers.

Figure 6: WRAP CPU usage when displaying heatmaps.

Surprisingly, when looking at the memory usages in
(Figs. 7 and 8), it seems that Tauri does not handle heat-
maps as well as the other solutions. The other solutions also
use less memory for the heatmaps than they do for the regu-
lar charts, even though the heatmaps have a lot more values
behind them. In contrast, Tauri used less resources for the
regular charts. Overall, this gives a good example of how
the different web-engines handle different data structures
differently from a resource perspective.

Figure 7: Memory usage for 5 subscriptions.

As a side note, it was also observed that the start-up time
of Tauri is approximately twice as fast as the web browsers,
and 3.75 times faster than Electron. This can contribute to a
better user experience (UX), particularly in the CCC where
applications maybe started and closed many times per day.

NEXT STEPS AND FUTURE OUTLOOK
After the benchmarks, several questions remain. On the

framework side, some open issues need to be addressed to
provide 100% usability inside the CCC. For example, the
integration of command-line arguments to control WRAP is
not yet ready. For Tauri, the need for plugins to be developed
and the associated maintenance has not yet been pursued.

Figure 8: Memory usage with WRAP displaying heatmaps.

This raises the question: is Tauri sufficiently better than Elec-
tron, in terms of performance, including start-up time, and
resource consumption to justify the addition of Rust in the
Controls technology stack? At the same time, would it be
wise to use Tauri as it is at the time of writing, knowing a sig-
nificant change in its backend implementation could happen
in the near future? Such a change will most probably have
beneficial consequences in terms of performance and ease
of deployment, however any integration work referenced
in this paper may need to be redone completely. For these
reasons, it was decided to proceed with Electron for CERN’s
Controls web-applications, for the foreseeable future. At
the same time, a close eye will be kept on Tauri, and it is
likely that the situation will be re-evaluated once the Tauri
web engine has been changed and when a production-ready
Kubernetes platform is available for CERN’s accelerator
controls services.

SUMMARY

The packaging PoC was a clear success, resulting in an
Electron-based deployment of a WRAP web-application,
that is being used on a daily basis, from CERN’s Control
Centre, running smoothly alongside a plethora of Java Swing
and PyQt applications.

The PoC gave important insights into the use of pack-
aging solutions. It also revealed that for now, Electron is the
only viable solution for CERN, since it does not require any
custom extensions to connect to the backends and does not
depend on any additional installations on the CCC Linux
consoles.

Compared to Electron, Tauri provides a smaller binary
size, faster start-up, and a lower CPU usage in several scen-
arios. In addition, while Chromium is the fastest and most
stable web-engine, Tauri managed to stay on top for several
benchmarks, clearly showing its potential. The foreseen evol-
ution of Tauri to integrate Chromium or Servo is appealing,
while the introduction of Kubernetes clusters for CERN’s
Controls will help address other issues such as certificates,
removing the need to develop specific plugins. Electron
wins, for now.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP090

TUPDP090

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

750

Software

User Interfaces & User Experience



REFERENCES
[1] CCM (CERNs Common Console Manager),
https://be-dep-css.web.cern.ch/node/123

[2] Electron, https://www.electronjs.org

[3] Tauri, https://tauri.app

[4] Wails, https://wails.io

[5] E. Galatas et al., “WRAP - A Web-based Rapid Applica-
tion Development Framework for CERN’s Controls Infrastruc-
ture”, in Proc. ICALEPCS’21, Shanghai, China, Oct. 2021,
pp. 894–898.
doi:10.18429/JACoW-ICALEPCS2021-THPV013

[6] Chromium, https://www.chromium.org/Home/

[7] Node.js, https://nodejs.org

[8] Rust, https://www.rust-lang.org

[9] WebKit, https://webkit.org

[10] Servo, https://servo.org

[11] AppImage, https://appimage.org

[12] FUSE, https://www.kernel.org/doc/html/next/
filesystems/fuse.html

[13] Electron Forge, https://www.electronforge.io

[14] E. Galatas et al., “Improving CERN’s Web-based Rapid Ap-
plication Platform”, presented at ICALEPCS’23, Capetown,
South Africa, Oct. 2023, paper TUPDP089, this conference.

[15] T. Oulevey et al., “An Update on the CERN Journey from
Bare-Metal to Orchestrated Containerization for Controls”,
presented at ICALEPCS’23, Capetown, South Africa, Oct.
2023, paper TH2AO03, this conference.

[16] Let’s Encrypt, https://letsencrypt.org

[17] Top,
https://man7.org/linux/man-pages/man1/top.1.
html

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP090

Software

User Interfaces & User Experience

TUPDP090

751

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


