
IMPROVING CERN’S WEB-BASED RAPID APPLICATION PLATFORM
E. Galatas∗, S. Deghaye, J. Raban, C. Roderick, D. Saxena, A. Solomou

CERN, Geneva, Switzerland

Abstract
The Web-based Rapid Application Platform (WRAP)

aims to provide a centralised, zero-code, drag-n-drop means
of GUI creation. It was created at CERN to address the
high maintenance cost of supporting multiple, often depre-
cated, solutions and potential duplication of effort. WRAP
leverages web technologies and existing controls system in-
frastructure to provide a drop in solution for a range of use
cases. However, providing a centralized platform to cater for
diverse needs and to interact with a multitude of data sources
presented performance, design, and deployment challenges.
This paper describes how the architecture evolved to ad-
dress technological limitations and increase usability and
adoption.

INTRODUCTION
The development of CERN’s Web-based Rapid Applica-

tion Platform (WRAP) aims to replace the expensive task
of specialised application development, and the time invest-
ment required by many people for maintenance [1]. Such a
platform needs to encapsulate a great deal of complexity in
its implementation, far greater than any individual user appli-
cation previously developed at CERN. Focusing on WRAP’s
large component parts individually (including both back-end
services and front-end modules), has helped navigate this
challenge. This paper describes some of the more difficult
challenges faced in each of these parts, together with the
implemented solutions, and limitations that remain to be
solved.

A summary breakdown of CERN’s accelerator control
system core concepts [2], in simple terms, will serve as a
foundation to understanding the WRAP architecture and the
aspects that it needs to address.

CONTROL SYSTEM OVERVIEW
Devices and Properties

Data produced by a device follows the so-called device-
property model. Each device having one or more properties,
and every property having one or more fields. For WRAP
device interactions, two types of operations are possible and
in most cases they are made on the property level:

1. Subscriptions to receive property updates.

2. Sets to load new values into a device property.
∗ epameinondas.galatas@cern.ch,

stephane.deghaye@cern.ch,
jakub.raban@cern.ch,
chris.roderick@cern.ch,
dinika.saxena@cern.ch,
andreas.solomou@cern.ch

In some cases, operations accept a filter called ”selec-
tor” that refers to a specific particle accelerator state for
which the operation should be performed. A Timing system
coordinates the state of the accelerators and devices react
accordingly. Properties that accept such filter are marked
as ”multiplexed”. For example, an extraction kicker mag-
net’s strength setting depends on the extraction energy, and
the property to control the strength is multiplexed to allow
different settings for different beams.

The Controls Configuration Service (CCS) [3] central-
izes the configuration of the entire Control System. Its
CCDA (Controls Configuration Data Access) API [4] pro-
vides, amongst other things, services to retrieve the available
devices, their property models and their supporting metadata
and available interactions.

Subscriptions
A subscription is established directly to a device, using

CMW [5], and references a property. A so-called ”first
update” provides an initial value when a client subscribes,
which is highly valuable for device properties that update
infrequently. For multiplexed properties, if a selector is
provided, a first update is received for the given selector
only, otherwise a value is received for each possible selector.

Data Archival
Device property data can be configured (using the CCS) to

have its data logged as times series in the CERN Accelerator
Logging Service (NXCALS) [6], which provides numerous
facilities to process and extract logged data.

Set Operations
In general, applying settings to devices requires the user

to provide values for each individual field in the property
concerned, resulting in one atomic ”Set” operation. CERN’s
setting management system ”LSA” [7] supports more sophis-
ticated interactions, including ”partial sets”, which allow to
emit some fields from a property setting, by internally using
the latest cached values. LSA also provides high-level virtual
devices, with virtual properties, that can also be set and sub-
scribed to. Behind the scenes, sets on these high-level device
properties will typically modify multiple property fields of
multiple underlying devices at the same time. For example,
when directly controlling the high-level physics parameters
of a particle accelerator, such as the tune, chromaticities,
etc.

PROJECT ARCHITECTURE
The WRAP architecture can be split into four major parts:

1. Metadata Service: a back-end service for providing
metadata.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP089

TUPDP089

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

740

Software

User Interfaces & User Experience



2. Live-Data Service: a back-end service for accessing
real-time device data.

3. Application Editor: a front-end module for creating
user applications.

4. Application Renderer: a front-end module for dis-
playing an application.

METADATA SERVICE
The metadata service is responsible for providing meta-

data for all available data sources and for facilitating storage
of user-created applications.

Providing coherent metadata can be especially challeng-
ing as there is not always a single source of truth. For exam-
ple:

• The current property model of a device is always de-
fined in the CCS. However, over time, the property
model of device may change multiple times for legiti-
mate reasons.

• Historical device data is archived in the NXCALS sys-
tem, but the historical data conforms to the structure
of the device properties at the time it was acquired and
logged.

In addition, due to incompatibilities between program-
ming languages or 3rd party software solutions, there are
some cases where it is not easy to properly represent data.
For example:

• Services written in Java lack unsigned integer support
on the language level, hence there is a lack of represen-
tation of such types when modeling metadata, which
gets referenced as a signed integer instead. For the
same case but seen from the low-level software, the
metadata type presents as unsigned.

• Similarly to above, array types in NXCALS may dif-
fer from the ones produced by the actual devices, due
to incompatibilities at the type level between the pro-
gramming languages and in this case, the Apache Spark
framework used in NXCALS.

Without the burdens of storage and design limitations of
higher level systems, the CCS would seem to be the logical
source from which to obtain accurate information about the
data produced by a device, however that is not always the
case. High-level sets (introduced earlier) are a vital control
operation that includes a validation layer of the incoming
values. The metadata governing this layer can be overridden,
for example, reducing the allowed value range of an integer,
driven by accelerator operation needs. As such, the statically
defined CCS metadata may not be accurate.

Solving this systemic issue required to develop a WRAP
metadata service, which, instead of simply relaying informa-
tion, reconciles metadata from multiple upstream services
to provide a complete and accurate device representation to

the front-end layer. This case highlights the importance and
value of having clear data specifications and system seman-
tics before tackling the implementation of any overarching
system.

LIVE-DATA SERVICE
The live-data service (LDS) is responsible for subscribing

to device properties and transmitting the acquired values as
requested by WRAP user applications.

Caching and Aggregation
In order to reduce unnecessary load on both the devices

and WRAP itself, the LDS shares subscriptions between
clients. While this is essential, it breaks the aforementioned
”first update” semantics, forcing the LDS to re-implement
caching of the latest property-level values. Some state man-
agement is necessary to persist and invalidate both subscrip-
tion handles and data cache. In addition, two forms of value
aggregation is necessary to improve semantics of end-user
applications. Cached values should be aggregated:

1. By property, since properties are atomic within the
control system.

2. By selector (if the property is multiplexed), to align
with accelerator state.

Selector-based aggregation requires a trigger to be sent out
by the Timing system, per timing domain (corresponding to
the available selector values), to drive the actual aggregation
process. Values that are delayed beyond a short grace period
are dropped, and marked as such. This process not only
avoids stale values being displayed in the applications, but
also assists in detecting potential errors in the underlying
data sources.

Communication Protocol
The communication between the WRAP back-end and

front-end was previously done via HTTP/2 push [8], a rel-
atively new web feature, that allows front-end requests to
receive multiple responses. This was ideal for simply sub-
scribing to a device property and receiving a stream of its
relevant field values. In particular, this stream was isolated
and mostly stateless, while supporting load balancing across
multiple server nodes for the case of bigger applications.
However, it proved detrimental when it came to implement-
ing the aforementioned data aggregations, on top of the hard
limit on the number of parallel connections allowed by web
browsers.

A subsequent switch to web-socket communication
opened the door to unlimited connections and led to the im-
plementation of a custom, more flexible, use-case-specific,
communication protocol. Improvements to performance
were also notable, especially on very high traffic user appli-
cations, as each message does not need to be wrapped in an
HTTP packet. This also improved the life of the WRAP de-
velopers as HTTP/2 push is unfortunately underused leading

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP089

Software

User Interfaces & User Experience

TUPDP089

741

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



to problems when developing locally, e.g. there is limited
support on Mac OS.

Reactive Modelling and Performance
The overarching WRAP LDS implementation encompass-

ing caching, synchronisation, and distribution of messages
from a device connection to the front-end widgets, is mod-
elled reactively, end-to-end, via the Observer pattern. Two
major implementations of the ”Reactive Extensions” speci-
fication [9] are utilised: Reactor [10] for the Java back-end
and RxJS [11] for the Angular JavaScript front-end.

Further performance improvements can be made in this
domain in the future, e.g. swapping message serialisation
from JSON to binary format. In particular, this will ben-
efit large (n > 1000) numeric array serialisation. Binary
buffers representing arrays can also be copied trivially be-
fore rendering, and be passed by reference, if web workers
were to be utilised for parallel computation. Regarding the
actual encoding protocols, msgpack [12] stands out with
its dynamic data schema support, and sufficient Java and
JavaScript implementations.

APPLICATION EDITOR
The user-facing application editor module accounts for

most of the complexity found in the WRAP front-end. Its
functionalities include:

• Creating ”dashboards” (application panels).

• Placing and configuring widgets.

• Modeling interactivity between widgets.

• Interacting with various data sources.

The basic layout of the editor can be seen in Fig. 1.

Tiling System
To fulfill its mission of being a rapid application platform,

WRAP needs to provide its users with a powerful, yet easy
to use means of dragging, dropping, and resizing widget
components, within the editor, in the form of tiles hosting
widgets.

Initially, an open-source library, Gridster [13], was used.
However, design limitations in its API and performance
issues proved insurmountable for more sophisticated appli-
cations, generating significant end-user support requests. A
novel, fully custom library was created as a replacement.
This new solution provides three different modes of opera-
tion to cover all potential cases:

1. A dynamic mode. This resembles the previous Grister-
based solution, providing responsive dashboard layouts
that utilise the entire screen real-estate, whatever the
screen size and aspect-ration.

2. A static aspect ratio mode.

3. A fixed size mode.

The latter two modes account for size-sensitive dashboard
layouts e.g. when embedded graphics are utilised.

This new solution natively provides functionality to group
the tiles that contain the widgets. It also has improved mouse
interaction functionalities, with respect to Gridster.

Widget Properties
Modeling the widget themselves poses a challenge, as

even a simple widget displaying the latest received value
can be customised extensively. Text position, appearance,
and coloring can be trivially expressed in CSS, while value
formatting can be achieved with a small JavaScript function
(the mechanics of which will be expanded upon in the fol-
lowing sections). However, modeling all these options, their
constraints, and interactions can quickly grow in complexity.
It requires extensive validation logic to guarantee that every
allowed option produces a valid application. This problem
cannot be avoided, however it is partially mitigated with
only a limited subset of the typical customisation properties
being modelled and exposed. This conservative approach
focuses on having clear semantics and mitigation of break-
ing changes in the future. For more complex logic, such as
user-defined formatting, the concept of Variables is used.

Variables
In WRAP, Variables are application-scoped, typed, virtual

data sources. They can be created on demand, and they
encapsulate application business logic. Example usages
include:

• Propagating URL parameters to widgets: For example,
a variable of type ”selector” is defined, with its value
present in the applications URL. This variable can in-
turn, be used in place of a selector, when referencing
a multiplexed data source. The result is a URL-based
data filter, set on application startup.

• Altering application behaviour: For example, a numeric
variable is defined, then bound to a Set widget and to
multiple chart widgets as ”history offset”. The result is
a single control (the Set widget) to adjust the rendered
history range over several charts.

• Creating forms: Multiple Set widgets can be bound to
a Variable as a dynamic submit event, with the Variable
itself bound to a button. The result is an elegant way to
produce no-code forms, especially useful when setting
entire properties as discussed above.

• Facilitating scripting: A user-defined formatting func-
tion for example, can be expressed as a script accepting
a data source and producing a string Variable. This can
be easily displayed on a standard label widget.

While introducing Variables, effort was invested to keep addi-
tional complexity to a minimum. Almost no new semantics
were introduced, as Set and Subscribe were already present
for device data sources, and are now reused to manipulate
Variables.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP089

TUPDP089

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

742

Software

User Interfaces & User Experience



Figure 1: WRAP Application Builder.

Scripting
While WRAP is primarily a no-code platform, a signif-

icant subset of users possess the technical knowledge and
have requested more advanced control possibilities. There-
fore, some degree of scripting is foreseen. The easiest ap-
proach would be a custom DSL allowing very specific com-
putations to be expressed, akin to the solution provide within
Grafana [14]. Nevertheless, unconstrained scripting, e.g.
evaluating JavaScript directly, exponentially raises WRAP
complexity. Scripts would have to be sand-boxed in a Web
Worker to avoid, at best, poor performance and, at worst,
security exploits akin to an XSS attack [16]. Technical chal-
lenges notwithstanding, the WRAP application editor would
have to evolve to an IDE-like solution to account for all
extra debugging and validation functionality needed. For
these reasons, only the DSL approach is currently being
considered for implementation.

Stateful Scalable Vector Graphics (SSVG)
Expert applications sometimes need some highly-

specialized visualizations. These cannot be expressed
through general-purpose widgets. For such cases, it is prefer-
able to empower the users to develop such visualizations
themselves. WRAP incorporates one way of doing this, via a
rather novel method, using dynamic SSVGs [15]. An SSVG
is an SVG image file, extended with additional metadata
that is ignored by an SVG renderer. WRAP can read this
metadata and infer what data sources are accepted and how
the SVG image should transform based on the state implied
by in-coming WRAP data source values, such as device
property updates.

Figure 2: Synoptic panel modelled as an SSVG.

The result is dynamic visualisations defined in a platform-
agnostic way. SSVGs greatly expand the scope of use cases
that WRAP can handle. Examples include synoptic displays,
as shown in Fig. 2, equipment visualisations (e.g. from CAD
drawings), etc.

APPLICATION RENDERER
A complete application must be able to handle fast ren-

dering speeds (fps > 30) and large data throughput (n > 1
MB/s). The main bottlenecks present in the WRAP front-end
layer are the chart rendering and Angular change detection
overheads.

Angular as a framework, provides tools to achieve fine
grained control of updates, albeit with some code complexity
penalty. Upcoming versions are expected to allow cleaner
control of how each component updates, enabling incremen-
tal performance gains.

Charting performance is also paramount. A few key
WRAP charting requirements include live chart updates,

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP089

Software

User Interfaces & User Experience

TUPDP089

743

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



support for multiple series, and high data volume visualisa-
tions. A significant performance gain was already achieved
by decimating data to what can reasonably be displayed on
the chart-occupied screen real estate. However, the chart-
ing library itself can have limitations. WRAP has used
Highcharts [17] from the start, a library that can produce
impressive visualisations with a great number of customiza-
tion options. However, the live data performance does not
meet the most demanding requirements and all available
optimisation options have been explored. As a result, other
options are now being considered. The most promising
candidates are Apache ECharts [18] and uPlot [19], with
the latter offering a more minimalist but high-performance
solution.

CROSS-CUTTING CHALLENGES
Some challenges span the entire WRAP stack and stem

from limitations of the technologies used, or they are inher-
ent to the nature of the implemented system.

Future Evolution
Providing a comprehensive platform, with a diverse target

audience, and high levels of abstraction from the underlying
system introduces complexities related to its evolution. If
a new feature is introduced, or deprecated, or if semantics
are adjusted, an upgrade path has to be defined. During
WRAP development, most major changes were preceded by
a formal specification. Subsequently, an application configu-
ration migration effort and new user documentation typically
needs to be included with new WRAP versions and feature
implementations, to ensure continuity of what already exists.

A thorough review process is in place at each release,
incorporating feedback not only from the development team,
but also from domain and underlying system experts.

64bit Integers
A major limitation that has been encountered is the lack of

64bit integer support in JavaScript and, by extension, JSON.
More specifically only one number type exists stored as 64bit
floating point [20] that constrains integer representation to
53 bits. Bigger integers are used across the control system to
represent bit sets, serial numbers, nanosecond timestamps,
and large configuration values.

Transmitting those values via JSON leads to data loss if
outside the allowable range. Solutions to this problem exist,
but bring significant drawbacks. String representation can
provide one such solution, coupled with a custom parsing
method to convert them appropriately. Another way to han-
dle this would be a switch to a binary protocol, like the ones
mentioned as options for efficient web-socket communica-
tion, but now this would be needed for simple HTTP calls as
well. In all cases, added complexity is introduced due to the
need for custom parsing and harder debugging, with binary
formats not being readable when inspecting network traffic.
Currently, there is a preference for the binary solution. Well

implemented parsers exist, and will be used in other parts
of the WRAP infrastructure for their performance benefits.

Assuming the transport problem is rectified, issues persist
with holding and using these values on the JavaScript level.
While there is a recently introduced ‘BigInt‘ type that can
fully represent them, it cannot interact with other number
types, making generic processing more complex. Addition-
ally, it actually represents arbitrary precision integers which
imposes some performance penalty. Graphing libraries lack
any support due to these factors and require normalisation
in advance to fit in a 53 bit range.

SUMMARY
Low-code platforms that cleanly abstract complicated do-

mains and hide the underlying technologies can bring im-
mense value to users, improve consistency, and reduce de-
velopment and maintenance costs. However, creating such
systems requires underlying services to conform to clearly
defined and agreed upon data semantics.

The team responsible for the platform implementation
must possess multi-disciplinary knowledge to select appro-
priate technologies and architect the system. They must
also possess or have constant access to extensive domain
knowledge, to correctly model the problem space. Efforts
should be made to guarantee a high degree of stability as
requirements and technologies inevitably evolve, shielding
the end-users from unnecessary work.

WRAP has already addressed a large number of these
challenges during its implementation. It is a key pillar in
CERN’s controls GUI strategy, looking to extend the scope
of supported use cases, leading to a much better federated
GUI landscape over the next 5 years..

REFERENCES
[1] E. Galatas et al., “WRAP – A Web-Based Rapid Applica-

tion Development Framework for Cern’s Controls Infrastruc-
ture”, in Proc. ICALEPCS’21, Shanghai, China, Oct. 2021,
pp. 894–898.
doi:10.18429/JACoW-ICALEPCS2021-THPV013

[2] S. Deghaye, E. Fortescue, “Introduction to the BE-CO Con-
trol System”, in CERN Document Server, Jan. 2020, pp 21–28.
https://cds.cern.ch/record/2748122?ln=en

[3] L. Burdzanowski et al., “CERN Controls Configuration Ser-
vice - a challenge in usability”, in Proc. ICALEPCS’17,
Barcelona, Spain, Oct. 2017, pp. 159–165.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL01

[4] B. Urbaniec et al., “Developing Modern High-Level Controls
APIs”, presented at ICALEPCS’23, Cape Town, South
Africa, Oct. 2023, paper TH2AO04, this conference.

[5] J. Lauener et al., “How to design & implement a modern
communication Middleware based on ZeroMQ”, in Proc.
ICALEPCS’17, Barcelona, Spain, Oct. 2017.
doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

[6] J. Wozniak et al., “NXCALS - Architecture and Chal-
lenges of the Next CERN Accelerator Logging Service”,

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP089

TUPDP089

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

744

Software

User Interfaces & User Experience



in Proc. ICALEPCS’19, New York, NY, USA, Oct. 2019,
pp. 1465–1469.
doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

[7] D. Jacquet et al., “LSA- The High Level Application Software
of the LHC - and its Performance During the First 3 Years
of Operation”, in Proc. ICALEPCS’13, San Francisco, CA,
USA, Oct. 2013, paper THPPC058, pp. 1201–1204.

[8] M. Thomson and C. Benfield, HTTP/2 RFC 9113, In-
ternet Engineering Task Force, Jun. 2022. https://www.
rfc-editor.org/rfc/rfc9113

[9] Reactive Extensions, https://reactivex.io

[10] Project Reactor, https://projectreactor.io

[11] RxJS, https://rxjs.dev

[12] Msgpack, https://msgpack.org/index.html

[13] Angular Gridster 2, https://github.com/tiberiuzuld/
angular-gridster2

[14] Grafana, https://grafana.com

[15] SSVG, https://mro-dev.web.cern.ch/docs/std/
ssvg-specification.html

[16] XSS Attack, https://en.wikipedia.org/wiki/
Cross-site_scripting

[17] Highcharts, https://www.highcharts.com

[18] ECharts,
https://echarts.apache.org/en/index.html

[19] uPlot, https://github.com/leeoniya/uPlot

[20] The Number Type, ECMAScript language specifica-
tion 2024, section 6.1.6.1., https://tc39.es/ecma262/
#sec-ecmascript-language-types-number-type

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP089

Software

User Interfaces & User Experience

TUPDP089

745

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


