
OPC UA EPICS BRIDGE
W. D. Duckitt. Stellenbosch University, Stellenbosch, South Africa

J. K. Abraham. iThemba LABS, Cape Town, South Africa

Abstract

OPC UA is a service-orientated communication architec-
ture that supports platform-independent, data exchange be-
tween embedded microcontrollers, PLCs or PCs and cloud-
based infrastructure. This makes OPC UA ideal for devel-
oping manufacturer independent communication to vendor
specific PLCs, for example. With this in mind, we present
an OPC UA to EPICS bridge that has been containerized
with Docker to provide a microservice for communicating
between EPICS and OPC UA variables.

INTRODUCTION

Open Platform Communications United Architecture
(OPC UA) [1] supports platform-independent, data exchange
between embedded microcontrollers, programmable logic
controllers (PLCs) or personal computers (PCs).

Of particular interest to us, is the use of OPC UA for
systems integration between the Experimental Physics and
Industrial Control System (EPICS) [2] and infrastructure
PLCs for heating, ventilation, and air conditioning (HVAC),
water supply and electrical reticulation systems.

Our experience has shown that infrastructure suppliers
typically have very little knowledge of EPICS, as EPICS is
mainly used for the control of large scientific experiments.
These suppliers, also typically implement their control sys-
tems in proprietary technology from PLC manufacturers.

In our opinion, it is left up to the EPICS developer to
specify which variables within the PLCs are of importance
and should be integrated with EPICS.

With all the major PLC suppliers [3–5] it is possible to
install an OPC UA server within the PLC and export and
serve these PLC variables over OPC UA. Once available via
OPC UA, the systems can then be integrated into EPICS.

Within the EPICS community, OPC UA integration is
possible using the EPICS device support module for OPC
UA [6, 7]. The device support module, in the initial release,
required the integration of a commercial C++ software de-
velopment kit. This limitation prompted us to investigate
open-source alternatives.

With our investigation, we found that it was possible to
develop open-source OPC UA clients using Python [8, 9].

With this in mind, we have drawn from our experience
in developing containerized EPICS systems in the React-
Automation-Studio project [10], and present a system in the
next sections which is containerized with Docker [11], de-
ployable as microservices and implemented in Python using
the Python SoftIOC project [12] and OPCUA-asyncio [9]
modules.

SYSTEM REQUIREMENTS
The goal was to develop a containerized software bridge

capable of synchronizing and relaying process variable in-
formation between the OPC UA and EPICS domains.

It should be designed purely with open-source libraries
and should be containerized with Docker [11] and version
controlled as a mono-repository using Git [13].

Furthermore, the configuration mode of entry should be
as docker compose files and EPICS record files.

Finally, the system should be sufficiently documented with
use cases, examples and an implementation guide.

Each of the goals has been achieved, and the system
overview is given below.

Figure 1: A state-machine diagram of the OPC UA EPICS
bridge implementation.

SYSTEM OVERVIEW
A high-level state machine diagram of implementation

of the OPC UA EPICS bridge microservice is shown in
Fig. 1. The microservice is written in Python [8] and

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP075

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP075

681

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

containerized with Docker [11]. In particular, we make of
the dbtoolspy project [14], Python SoftIOC project [12]
and OPCUA-asyncio [9] modules to implement the system.
Descriptions of the states of the service are given below:

Start
When the service is started, environment variables are

passed to the service. These environment variables deter-
mine the uniform resource locator (URL) of the OPC UA
server, the subscription rate, the EPICS record file to use,
and whether to connect securly to the server.

Load DB File
Thereafter, we use dbtoolspy [14] to load EPICS records

that describe the relationship between the OPC UA and
EPICS variables. The dbtoolspy module conveniently loads
the record information and exposes this as a dictionary in
Python.

Create OPC UA Client
We make use of the Python Opcua-asyncio open source

project [9] to establish a client connection to a OPC UA
server. We use the information loaded in the proceeding
step to configure the subscriptions to each of the OPC UA
variables. The EPICS DTYP, INP and OUT field is used to
make the correct subscription type to each of the variables.

As mentioned previously, the URL of the server and the
subscription rate are passed to the service as environment
variables.

Create EPICS PVs
We use the Python SoftIOC project [12] to establish each

of the EPICS process variables (PVs) for the EPICS input
output controller (IOC).

We use the information loaded in the Load DB file step
to configure each of the EPICS PVs.

Link EPICS PVs and OPC UA Variables
Finally, we link between the OPC UA Client variables

and the EPICS IOC PV’s data change callbacks based on the
information loaded in the Load DB file step. The callbacks
perform type checking, and type cast the new values between
the data types used internally in the OPC UA and EPICS.

Run
If no exceptions occur during the loading of previous steps,

then the bridge is kept alive indefinitely. If an exception
occurs, for example, if the PLC is rebooted, a connectivity
exception will be thrown and the bridge service will exit.

Exit
When the microservice is stopped or an exception occurs,

the system will exit. All the listening EPICS clients will
therefore get a channel access (CA) exception notification.

If the microservice is configured to restart, then connec-
tivity will resume on the EPICS CA when the new instance
of the bridge establishes connection.

CONFIGURATION AND DEPLOYMENT
The system is designed to be orchestrated with Docker

Compose [15], although any other orchestration system such
as Kubernetes [16] can be used by porting the configuration
file. An example configuration file is shown in Fig. 2.

The configuration file has numerous standard docker pa-
rameters, importantly, the restart mode is set to: always. This
will make sure the microservice repeatedly tries to establish
connection to an OPC UA server if an exception occurs. The
network mode is also set to: host.

This enables the EPICS IOC to be exposed on the host
computers subnet. The name of the client, URL of the server,
the subscription rate, and a parameter that defines whether
to connect securely to the OPC UA server are set in the
configuration file as environment variables.

Figure 3 shows how the system may be deployed with
multiple EPICS clients communicating to two PLCs though
two OPC UA EPICS bridges. In this case, the configuration
file would be altered to contained two microservices each
connecting independently to a PLC. Furthermore, different
EPICS record files, describing each of the PLCs are loaded
for each microservice.

An example of a EPICS db file depicting a binary in (BI)
and binary out (BO) variable, which are compatible with
OPC UA Boolean type, is shown in Fig. 4.

From an EPICS developer point of view, the interface
should be very familiar. The INP and OUT fields contain
a string that describes OPC UA namespace (ns) and the
connection to the OPC UA variables. The other fields are
standard EPICS record fields and values, except for the new
EPICS DTYP field values we have introduced.

We use them to perform type conversion between the
OPC UA data types and the EPICS PV equivalent. The full
compatibility of the OPC UA types and EPICS records are
given in Table 1.

In the examples in Fig. 4, the EPICS PVs, OPCUA-
Python:Bi and OPCUA-Python:Bo, connects to the OPC
UA variables named GVL.BiBool and GVL.BoBool respec-
tively.

SECURITY
The Opcua-asyncio project provides various levels of se-

curity and authentication, such as: client certificate based
authentication and transport layer security. The different
modes are enabled via environment variables and example
docker compose configuaration files for connecting to secure
and unsecure servers are provided. The Git repository also
provides scripts for generating server and client certificates.

COMPATIBILITY
All the standard PLC data types shown in Table 1, have

been verified to work with the OPC UA EPICS bridge.
For example, Table 1 indicates that a standard PLC BOOL
datatype is served as a boolean in the OPC UA domain and
can be accessed as a EPICS binary in (BI) or binary out
(BO) variable using the OPC UA bridge. Similarly, a PLC

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP075

TUPDP075

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

682

Software

Control Frameworks for Accelerator & Experiment Control

version: '3.2'
services:

opcuapepicsbridge:
build:

context: ./
dockerfile: docker/opcuaEpicsBridge/Dockerfile

restart: always
network_mode: host
tty: true
stdin_open: true
environment:

- name=OpcuaTest1
- url=opc.tcp://0.0.0.0:4840
- subscriptionRate=100
- secure=False

command: "/bin/sh -c 'sleep 5; python bridge.py;'"
volumes:

- ./certificates:/certificates/
- ./db/test.db:/bridge/bridge.db

Figure 2: An example Docker Compose configuration file.

Table 1: Compatibility Between OPC UA Data Types, PLC Data Types and EPICS Records and the OPC UA EPICS Bridge
DTYP

OPC UA
Data Type

PLC
Data Type

New OPC UA Bridge
EPICS DTYP

Compatable EPICS Records
AI AO BI BO STRINGIN STRINGOUT

Boolean BOOL OPCUA_Boolean Y Y
SByte SINT OPCUA_SByte Y Y
Byte USINT OPCUA_Byte Y Y
Int16 INT OPCUA_Int16 Y Y
Int32 DINT OPCUA_Int32 Y Y
String STRING OPCUA_String Y Y
Float REAL OPCUA_Float Y Y
Double LREAL OPCUA_Double Y Y
UInt16 UINT OPCUA_UInt16 Y Y
UInt32 UDINT OPCUA_UInt32 Y Y
Int64 LINT OPCUA_UInt64 Y Y
UInt64 ULINT OPCUA_UInt64 Y Y
DateTime DT OPCUA_DateTime Y

REAL datatype is served as a 32-bit float in the OPC UA
domain is compatible with the EPICS analog in (AI) and
analog out (AO) process variables.

The Git repository [17] for this project provides a plat-
form independent Python based OPC UA server, that serve
variables for all the standard OPC UA data types for testing
purposes. The repository also contains the corresponding
docker compose file that is used for testing purposes. A
React-Automation-Studio (RAS) project of which a screen-
shot is shown in Fig.5 is also available. This RAS project
provides for quick and easy testing of test system and will be
used for future extensions. The system has also been verified
on a Beckhoff C6015 Industrial PC running Twincat using
the TF6100 OPC UA server [18].

CONCLUSION
An OPC UA to EPICS bridge that has been containerized

with Docker to provide a microservice for communicating
between EPICS and OPC UA variables been designed. The
system supports all the standard OPC UA data types.

We urge the EPICS community to test and evaluate the
system and to provide feedback via the React-Automation-
Studio discussion group [19].

REFERENCES
[1] OPC UA, https://opcfoundation.org/about/opc-
technologies/opc-ua/

[2] EPICS, https://epics.anl.gov/
[3] SIMATIC controller - Industrial Automation Systems,
https://www.siemens.com/global/en/products/
automation/systems/industrial/plc.html

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP075

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP075

683

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 3: A diagram illustrating example deployment of two
OPC UA EPICS bridges that communicate to two PLCs and
multiple EPICS clients.

record(bi, "OPCUA-Python:Bi")
{

field(DTYP,"OPCUA_Boolean")
field(INP, "ns=4;s=GVL.BiBool")
field(DESC, "BI")
field(ZNAM, "Off")
field(ONAM, "On")

}

record(bo, "OPCUA-Python:Bo")
{

field(DTYP,"OPCUA_Boolean")
field(OUT, "ns=4;s=GVL.BoBool")
field(DESC, "BO")
field(ZNAM, "Off")
field(ONAM, "On")

}

Figure 4: Example EPICS records.

[4] Automation | Open, PC-based control technology | Beck-
hoff, https://www.beckhoff.com/en-za/products/
automation/

[5] Programmable Logic Controllers (PLC) | OMRON,
https://industrial.omron.co.za/en/products/
programmable-logic-controllers

[6] R. Lange, R. A. Elliot, B. Kuner, K. Vestin, C. Winkler, and
D. Zimoch, “Integrating OPC UA Devices in EPICS”, in
Proc. ICALEPCS’21, Shanghai, China, 2022, pp. 184–187.
doi:10.18429/JACoW-ICALEPCS2021-MOPV026

Figure 5: The React-Automation-Studio testing user inter-
face.

[7] epics-modules/opcua: EPICS Device Support for OPC UA,
https://github.com/epics-modules/opcua

[8] Python, https://www.python.org/

[9] Opcua-Asyncio, https://github.com/FreeOpcUa/
opcua-asyncio

[10] W. Duckitt and J. Abraham, “React Automation Studio: A
New Face to Control Large Scientific Equipment”, in Proc.
Cyclotrons’19, Cape Town, South Africa, 2020, pp. 285–288.
doi:10.18429/JACoW-Cyclotrons2019-THA03

[11] Docker, https://www.docker.com/

[12] pythonSoftIOC, https://dls-controls.github.io/
pythonSoftIOC/master/index.html

[13] Git, https://git-scm.com/

[14] dbtoolspy: Python Module to Read EPICS Database, https:
//github.com/paulscherrerinstitute/dbtoolspy

[15] Docker Compose, https://docs.docker.com/
compose/

[16] Kubernetes, https://kubernetes.io/

[17] React-Automation-Studio/OPCUA-EPICS-BRIDGE,
https://github.com/React-Automation-Studio/
OPCUA-EPICS-BRIDGE

[18] TwinCAT 3 OPC UA TF6100, https://www.beckhoff.
com/en-za/products/automation/twincat/tfxxxx-
twincat-3-functions/tf6xxx-connectivity/
tf6100.html

[19] React-Automation-Studio · Discussions · GitHub,
https://github.com/orgs/React-Automation-
Studio/discussions

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP075

TUPDP075

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

684

Software

Control Frameworks for Accelerator & Experiment Control

