
IMPLEMENTATION OF AN EXTERNAL DELAY CALCULATOR
FOR MeerKAT

B. Ngcebetsha∗, South African Radio Astronomy Observatory, Cape Town, South Africa

Abstract
The MeerKAT is an array of dishes designed to study

the mysteries of the distant universe, it is made up of 64
dishes that operate as one telescope. The signal from the
distant celestial objects encounters several distortions and
is corrupted when it arrives at the receiver. Most of the dis-
tortions are due to the medium between the observatory and
the object of interest. Each corruption can be quantified and
corrected, the corruptions are termed ”propagation effects”.
The process of correcting the propagation effects constitutes
calibration and takes on various stages during and after the
observation is done. The context of this paper takes a close
look at signal path delay correction. This is the adjustment
of the time of arrival of the signal at the correlator from all
64 antennas. This is required as the signal arrives at differ-
ent times at every antenna, and the cable from each antenna
is of differing length. The MeerKAT CAM system imple-
ments a delay update manager. The delay update manager
calculates the delay terms, and submits the corrections to the
correlator. In this paper, we describe how this solution was
evolved when katpoint (the underlying library on which
the delay corrections depend) had a change in its own de-
pendencies. There were two major changes to katpoint
1) utilising astropy instead of ephem, and this meant 2)
migrating telescope code from version 2 to 3. In this pa-
per we explore the lessons learned when katpoint started
to implement astropy which is implemented in Python3
whilst the rest of the code-base was still in Python2. The
technical benefit of this update was an improvement in the
astrometry for delay calculations which will enhance the
MeerKAT science and images.

INTRODUCTION
One of the objectives of radio observations by telescopes

such as the MeerKAT is to make a map of the patch of sky
observed and create a catalogue with a list of astronomi-
cal objects and their physical properties. The telescope is
composed of pair-wise groupings of the antennas known as
baselines. An illustration of a baseline is Fig. 1, where the
signal arriving at both antennas is recorded ideally at the
same time for further processing at the correlator. Prior to
arriving at the correlator, the signal is a voltage reading,
and is converted to a digital signal by the analog-to-digital
converter (ADC). The main task of the correlator (dashed-
box), is to multiply and time-average (correlation). An extra
step in collecting the data is the tweaking of the time of ar-
rival. This is achieved by the correlator introducing a signal
∗ bngcebetsha@sarao.ac.za

Figure 1: An two-antenna interferometer, antenna1(left) de-
tects the signal 𝜏𝑔 seconds later than antenna2(right). Where
𝜏𝑔 is called the geometric delay.

path delay. The delay is usually in the range of nanoseconds
(billionth of a second), defined as the time it takes light to
travel the distance �⃗� ⋅ ⃗𝑠. This is the distance between the tip
of antenna2 on the right and that of antenna1 on the left in
Fig. 1.

The antennas sample the signal in an arbitrary plane
known as the uvw plane, and this is the coordinate system
in which the baselines have been positioned. There exists,
theoretically - a Fourier relationship between the uvw plane
and the actual image plane, see Fig. 2. The output of the
correlator is a table of complex numbers known as visibility
data. The data represents snapshots at every feasible uvw co-
ordinate at the location of every baseline for the duration of
the observation. In order to make the data scientifically use-
ful, astronomers make an image of the sky through the use of
deconvolution algorithms built into imaging pipelines. This
process produces better results with improved and accurate
measurement of sky positions. The sky position measure-
ments also rely on accurate timing of the arrival of the signal,
which has travelled vast distances from outer space. The
incident signal is electromagnetic in nature, the wave nature
of light implies the phase at which it arrives also needs to be
taken into consideration and corrected. MeerKAT generally
uses an in-house Python library known as katpoint for
all target-related motions in the control software. Earlier

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP068

TUPDP068

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

658

General

Device Control



Figure 2: An illustration of the image to uvw plane relation-
ship.

versions of the katpoint used the standard ephem library
for various calculations of motions and positions of celestial
objects.

To make improvements to the positional accuracy of
sources in MeerKAT images there are two areas that we
required to be addressed:

1. the way baseline coordinates are generated, and
2. delay calculations.

The potential improvements are both addressed by switching
katpoint to utilize astropy rather than ephem as the un-
derlying library for computations of motions and positions
of celestial bodies. This poses a challenge for the MeerKAT
CAM (Control And Monitoring) software team as astropy
is now fully ported to Python3. Currently the CBF (Correla-
tor Beam Former) proxy code is implemented in Python2.7,
and it is not feasible to migrate it to Python3 in the required
time frame (CAM codebase is yet to be fully migrated to
Python3). The CBF proxy package has many other depen-
dencies some of which are also still on Python2.7. As a
solution to this issue, CAM created a new service that could
run under Python3. The service would provide delay cor-
rections on-demand. This would then require a rework of
the CBF proxy to get delay correction values from the new
service via KATCP (Karoo Array Telescope Control Protocol)
using remote calls. With this approach the rest of CAM would
stay on the old version of katpoint, however the delay cor-
rections would be calculated with the new astropy-based
version of katpoint. The delay correction model can be
instantiated from a single JSON-encoded string, which is the
equivalent description of the object. This may be convenient
to send over KATCP. The new service is named External De-
lay Calculator, and will meet the requirements described
above.

DELAY MODEL
The diagram on Fig. 3 illustrates the underlying classes

of the External Delay Calculator and the methods with their
relationships and dependencies. The two rectangles the
bottom labelled DelayModel<x> indicate the lowest level.
Instances of DelayModel are created to make delay calcu-

Figure 3: The underlying classes as per the Delay Calculator
Design Record. All classes live in seperate modules that
comprise the External Delay Calculator.

lations for each target at every antenna.
The instances of DelayModel are repositories for storing

delay model parameters, allowing easy construction, inspec-
tion and saving of the delay model. The actual calculations
happen in katpoint.DelayCorrection, which is more
efficient as it handles multiple antenna delays simultane-
ously.

DELAY CALCULATOR MANAGER
The DelayCalculatorManager will accept instructions

from DelayCalculatorDevice to create DelayModel ob-
jects that are instances of katpoint.DelayModel, the de-
sired delay calculations for the given target are performed
and sent back as string to DelayCalculatorDevice.
The delay manager will launch as many instances of
katpoint.DelayModel as there are targets. This class in-
herits from katcore base classes that allow simulation and
control of the external delay calculator as a device in CAM.

DELAY CALCULATOR DEVICE
The DelayCalculatorDevice class in Fig. 3 is a

KATCP device server for the External Delay Calculator and
interfaces with CBF proxy. It receives KATCP requests in the
form of JSON strings from CBF proxy (as shown in Table 1)
and decodes them into Python objects that can be used by
DelayCalculatorManager. It then encodes the responses
from DelayCalculatorManager to strings and responds
to the CBF proxy.

Supported Requests
• ?set-delay-model This request creates a

delay model object, using an instance of
katpoint.DelayCorrection. The instance of
katpoint.DelayCorrection uses delay models
from an array of antennas connected to a correlator,
and produce delay and phase corrections for a given
target and timestamp, for all antennas at once. The
delay corrections are guaranteed to be strictly positive.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP068

General

Device Control

TUPDP068

659

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 4: A diagram depiction of where within CAM ar-
chitecture, the External Delay Calculator lives. The part
indicated by CBF1 represents CBF proxy which is the inter-
face to the actual CBF device where the delay corrections
are applied.

Each antenna is assumed to have two polarisations (H
and V), resulting in two correlator inputs per antenna.

• ?set-target The ?set-target KATCP request will
set a new target for which to calculate delay corrections.

• ?get-corrections Calculate the delay corrections
for a given target and return the results as 2 JSON
encoded dictionaries that can be formatted and sent to
the CBF instrument.

• ?clear-delay-model Upon subarray deactivation,
this request will remove the given delay model and
its targets from memory.

CBF PROXY
At the top of Fig. 4 is represented, the CBF proxy which

is the interface used by the observation script to send com-
mands to the correlator. In the context of delay calculations,
the CBF proxy will request delays for a given target for all
antennas. The underlying classes will then carry out the
required computation and return the result to CBF proxy.
The delays are then sent to the actual CBF device (correla-
tor) to be applied on the data streams. The MeerKAT CBF
data proxy manages the data generation for an array. There
is always one data proxy for each array. The underlying
device is the actual correlator, called Correlator Master Con-
troller (CMC). The role of the CBF proxy is to facillitate
commands to the CMC via KATCP. The CMC responds with
a message to the proxy of the outcome, or provides details
in the case of unintended consequences. The CMC device
exposes a KATCP interface for accepting and responding to
KATCP requests.

CONCLUSION
The External Delay Calculator has been integrated into

MeerKAT as of end of 2021, it has proven to give more

accurate values for the delays in observations. There is
currently an open issue pertaining to the rate at which the
delays are fetched and applied. The team has planned to
apply an appropriate solution in later sprints. The current
priority is the integration of the new CBF (CBF PLUS),
which will accommodate an extra 20 dishes that will be
commissioned as part of MeerKAT PLUS.

Table 1: An example JSON string sent by the External Delay
Calculator back to CBF proxy to be sent to CBF device. The
keys are time delays and phase fringes for each antenna
polarization ℎ and 𝑣 and the values in the first dictionary are
the delay adjustments in seconds (s) and phase fringes in
(deg) for the second dictionary.

{'delay_result':
{'m008h':

[1.968411243784553e-06, 0.0],
'm008v':

[1.968411243784553e-06, 0.0],
'm001h':

[1.0084078291945032e-07, 0.0],
'm001v':

[1.0084078291945032e-07, 0.0],
'm060h':

[1.9448476831146047e-06, 0.0],
'm060v':

[1.9448476831146047e-06, 0.0],
'm051h':

[1.9477931281983483e-06, 0.0],
'm051v':

[1.9477931281983483e-06, 0.0]},
'fringe_result':

{'m008h':
[-3025.2007294890336, 0.0],

'm008v':
[-3025.2007294890336, 0.0],

'm001h':
[12041.62927381297, 0.0],

'm001v':
[12041.62927381297, 0.0],

'm060h':
[-2835.099113337884, 0.0],

'm060v':
[-2835.099113337884, 0.0],

'm051h':
[-2858.8618153567777, 0.0],

'm051v':
[-2858.8618153567777, 0.0]}

}

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP068

TUPDP068

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

660

General

Device Control




