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Abstract

Taranta is a software suite for generating graphical in-
terfaces for Tango Controls software, currently adopted by
MaxIV for scientific experiment usage, SKA during the cur-
rent construction phase for the development of engineering
interfaces for device debugging, and other institutions. A
key feature of Taranta is the ability to create customizable
dashboards without writing code, making it easy to create
and share views among users by linking the dashboards to
their own tango devices. However, due to the simplicity and
capabilities of Taranta’s widgets, more and more users are
creating complex dashboards, which can cause client-side
resource problems. Through an analysis of dashboards, we
have found that excessive memory requests are generated
by a large amount of data. In this article, we report on the
process we believe will help us solve this performance issue.
Starting with an analysis of the existing architecture, the
issues encountered, and performance tests, we identify the
causes of these problems. We then study a new architecture
exploiting all the potential of the Javascript framework React
on which Taranta is built, before moving on to implementa-
tion of the solution.

INTRODUCTION
Taranta [1] is a tool for creating user interfaces for Tango

devices without the need for coding [2]. In the Problem
Impact section, we will analyze how the use of Taranta for
creating complex dashboards has led to performance and sys-
tem stability issues, resulting in a loss of confidence within
the community. We then explored an architectural solution
to the problem described in the Problem Analysis section.

In the Implementation section, we describe the imple-
mentation of this solution, which was released in the latest
version of Taranta [3], and its results are detailed in the
Benchmark Test section. Finally, in the conclusions, we
highlight the architectural improvements introduced into
the system through the implemented changes and discuss
potential enhancements.
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PROBLEM IMPACT
The issue reported by Taranta users involved a gradual

slowdown of dashboards containing numerous widgets, even-
tually leading to a complete halt in updates. Additionally,
there was a progressive increase in browser RAM usage.
This problem was highly inconvenient and, at times, detri-
mental for several reasons. Primarily, users were unaware
that the values from Tango were not being updated at the
correct frequency due to the lack of a runtime notification
mechanism. Worse still, when the slowdown was severe
enough to freeze the dashboard, it provided no feedback
to the user. In this state, the user viewing the dashboard
assumed that updates from Tango were not coming through
when in reality, they had a way to ascertain the current state
of the control system. Moreover, the system might not re-
spond to commands, meaning a user could issue a command
to change an attribute or state and not observe the result.
This situation must be avoided, as the user may need to dis-
cern whether the issue stems from malfunctioning devices
or an unresponsive user interface. Lastly, there was a con-
cern regarding the escalating browser RAM usage. This was
particularly troublesome, given that Taranta is a JavaScript
application, hence client-side, and could significantly slow
down the user’s computer or even cause it to crash.

Addressing this problem promptly was imperative since
these often severe issues were eroding user confidence in
using Taranta. It is important to note that this type of issue
arose only in dashboards with a high number of running
widgets over an extended period. For simpler dashboards
executed for a limited time, the problem was negligible.

The developers of Taranta were already aware of the per-
formance limitations stemming from an architecture inade-
quate for supporting a high number of widgets and updates.
However, priority was given to developing new features
rather than resolving this issue. Taranta users had been
using the software for several years without encountering
significant problems and appreciated the newly added fea-
tures. The community’s reporting of this issue is a clear
indication that users are increasingly adopting the software
for more complex scenarios, not just as a simple prototyp-
ing and testing tool. This underscores the software’s good
quality, the utility of the introduced features, and a growing
confidence in using Taranta.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP044

Software

User Interfaces & User Experience

TUPDP044

617

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



PROBLEM ANALYSIS
In order to analyze the issue, a tool called React Dev-

Tool [4] was employed. React DevTool is a suite of tools
that facilitates debugging of React applications, providing a
range of useful instruments such as the Profiler. This tool
allows for a component-by-component analysis of the in-
coming data flow and monitoring the ability to process and
render the data.

Through analysis sessions, it was revealed that when a
dashboard is run, triggering data transmission from Tan-
goGQL, all components within the dashboard, including
headers, etc., are triggered by each piece of data arriving at
Taranta from TangoGQL. However, not every trigger nec-
essarily results in an actual new component render, as the
data is often not involved in the component. It is thus in-
ferred that upon data arrival, Taranta forcibly refreshes all
components within the dashboard sequentially. Therefore,
the subsequent data must await a total refresh before being
processed. Consequently, a few seconds after running the
dashboard, all components, as evident in the image below,
are unable to process the incoming data and thus get queued.
As the volume of data and time increase, the queue of data
to be processed grows, causing progressively greater delays,
eventually leading to a halt in the dashboard update. The
increase in the volume of data to be processed corresponds
to an increase in the space required for their storage, hence
resulting in the reported increase in RAM usage by users.

All these issues can be attributed to a known architectural
problem. Let us consider the dashboard view, where each
time data arrives from TangoGQL, it is handled by the class
RunCanvas.tsx [5]. This class sequentially updates all com-
ponents linked to the dashboard using attributeEmitter with
the received data, even if these components are not involved
with the received data.

Previously, no significant issues were encountered since
users used Taranta solely for testing and debugging purposes,
utilizing a limited number of widgets for a limited duration.
As Taranta evolved into a more powerful visualization tool,
users began creating increasingly complex dashboards and
running them for longer periods based on use cases. For
instance, these dashboards would run for the entire duration
of an experiment, which could last for hours. The increase in
the number of widgets in a single dashboard led to a rise in
the number of associated React Components. The addition
of connected devices increased the volume of data arriving
at a dashboard. The longer execution times led to an increase
in the message queue. All of these factors, exacerbated by
users’ need to open multiple sessions simultaneously, re-
sulted in dashboard crashes and an overall system slowdown,
as elaborated in the preceding section.

In reality, this architectural problem had been identified
earlier during benchmark testing of Taranta in its initial
versions, back when it was still known as Webjive. The
design rationale behind this architectural choice stemmed
from the initial intent of the project, which was to create
dashboards with few devices and widgets, to be used for a

limited period. However, as the project evolved and the range
of use cases expanded, this architectural solution proved
to be limiting. Consequently, a comprehensive software
refactor was deemed necessary.

ARCHITECTURAL SOLUTION
To address the architectural issue, our focus centered on

the relationship between components and data. The primary
challenge was that each component was triggered every time
new data arrived, regardless of whether the data was relevant
to the component. This was due to the component manage-
ment being delegated to specific classes that responded to
incoming data. Consequently, we designed an architecture
where each component is connected to the data and is trig-
gered only when data of relevance arrives. Otherwise, the
component remains on standby, avoiding unnecessary ren-
ders. Additionally, we aimed to decouple individual compo-
nents from the data structure. Previously, components were
directly connected and dependent on Tango APIs developed
for Taranta to establish connections with TangoGQL. How-
ever, in this new approach, we opted to utilize an internal
store within the web application to connect React Compo-
nents. This ensured that components were not directly tied
to the data source, thereby improving architectural modifia-
bility, extensibility, and testability. To complete the system’s
architecture, we introduced a middleware responsible for
subscribing and unsubscribing components to data and pop-
ulating the internal store.

IMPLEMENTATION
The proposed architectural solution is based on the React

technology stack, incorporating Redux [6] to fully leverage
the capabilities of this popular framework. React operates
on the principle of ’reacting’ to changes in data or, more
precisely, the component’s state, rendering only the involved
component thanks to the Virtual DOM, a core concept in-
troduced by React.

Each component can maintain its state as an object, and
when this state changes, React automatically re-renders the
component, reflecting those changes in the user interface.
The state is managed internally within a component and rep-
resents the data that may change over time based on various
events or user interactions. Components can re-render to
update the UI based on the current state.

Redux extends the concept of local component state pro-
vided by React. It is a state management library that allows
for the management of application state in a more predictable
and centralized manner. The Redux Store was employed as
the application’s store.

The Redux store is a central, plain JavaScript object that
encapsulates the entire state tree of a Redux application. It
serves as the nucleus of a Redux application, functioning as
a single source of truth for the application’s state. The store
contains the application state and provides a mechanism
for dispatching actions to update the state based on those
actions.
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The management of data population, subscription, and
unsubscription was delegated to the Redux middleware. In
Redux, middleware is a means to extend the functionality of
the store’s dispatch method. It acts as a third-party exten-
sion point between dispatching an action and the moment it
reaches the reducer. Middleware enables the execution of
additional code and logic before an action is handled by the
reducer, facilitating the implementation of various advanced
capabilities. Middleware functions in Redux have access to
the action, the current state, and the ability to dispatch new
actions. This makes middleware a potent tool for adding fea-
tures such as logging, asynchronous behavior, or modifying
actions before they reach the reducers.

The communication with TangoGQL is naturally handled
by the middleware, specifically named websocketmiddle-
ware, which is responsible for subscribing and unsubscrib-
ing to the data requested by components and populating the
store. Figure 1 is an architectural diagram.

Figure 1: Websocket block diagram.

The communication mechanism between components and
the store was designed following best practices in the Re-
act/Redux stack.

Taranta operates by establishing a socket connection at the
commencement of the runCanvas, initiated by pressing the
Start button on dashboards, or upon the selection of a device
in the overview. This socket remains active until either the
Edit button is pressed on the dashboards, or the user exits
the overview or closes Taranta within the browser.

Taranta has two points of data injection: one for dash-
boards and another for the overview.

These injection points are defined in the following files:

• taranta/src/dashboard/components/RunCanvas/
emmiter.ts (for dashboards)

• taranta/src/jive/state/api/tango/index.js (for the
overview)

In both these files, a function called socketUrl(tangoDB:
string) defines the URL for socket communication.

For communication between Taranta and TangoGQL, the
data type is defined by Graphene-Python, a library used to
construct GraphQL APIs in Python.

In the creation of the WebSocket middleware, a socket ob-
ject is instantiated to establish a connection with TangoGQL.
Several listeners are attached to this socket object, including:

• open: This listener allows for the execution of tasks or
setting flags to indicate successful socket opening.

• message: This listener is activated each time data or
a message is received from TangoGQL via the socket.
Upon receiving a message, an action is dispatched to
store this message in the store. The subscribed compo-
nents then react (re-render) based on this updated data
in the store.

• disconnected: This listener is invoked when the socket
connection is terminated.

Additionally, the WebSocket middleware continuously
listens to Redux events (UNSUBSCRIBE, SUBSCRIBE,
etc.).

• SUBSCRIBE EVENT: This event is triggered when
the socket is open, but no data is received from Tan-
goGQL. To receive data (in this case, AttributeDisplay),
a subscribe event needs to be raised for a specific device
attribute. For example, the Attribute Display compo-
nent can raise a SUBSCRIBE event with the device and
the attribute in the payload. The WebSocket middle-
ware listens to this subscribe event and requests data (in
this case, the device attribute value) from TangoGQL
via the socket.

• UNSUBSCRIBE EVENT: This event facilitates un-
subscribing from data coming from TangoGQL.

• Custom listeners can also be implemented as needed.

The store is an object that maintains the state of the en-
tire application in object format. Every incoming message
or data from TangoGQL is stored within the store. React
components are subscribed to the store object. Any change
in the store prompts the respective subscribed component to
re-render. Figure 2 is a Websocket architecture.

Figure 2: Websocket architecture.

Implementation Roadmap
The initial phase of development commenced with Taranta

version 1.3.12 and was divided into two stages. The first
involved creating the middleware and the store, along with
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refactoring the Device view. The Device portion was chosen
due to its relative simplicity, and releasing this version as a
beta test allowed for valuable feedback to address any poten-
tial bugs or malfunctions resulting from such a significant
refactor.

The released version was 2.0.0 [7], involving 125 commits
and modifications to 101 files. Upon the release of this
version, the community was encouraged to test and utilize
it, aiming to identify and rectify errors while implementing
necessary improvements.

Following the release of version 2.0.0, a new branch was
created for a complete refactor of the dashboard view. Given
the complexity of this refactor, both versions, 2.0.0 (for bug
fixes) and the version under development, were maintained.
In addition to the dashboard refactor, a comprehensive up-
date of libraries to their latest versions and an upgrade to
React 17 were performed. Upon completion of develop-
ment, various improvements and bug fixes from the 2.0.0
version of the main branch were also incorporated. The fi-
nal released version, inclusive of all updates, was version
2.4.0 [8], involving 226 commits and 342 files.

BENCHMARK TEST
The results of the conducted benchmarks are then reported.

To carry out the tests, a dedicated Tango device was devel-
oped, comprising 100 attributes, each characterized by:

• The attribute name follows the pattern Int_RO_xxx,
where xxx is a sequential number ranging from 001 to
100.

• The attribute value is a random integer between 0 and
100, followed by the character ’@’ and the timestamp
indicating when the number was generated.

• The attribute updates every second.

• An attribute updates with a one-tenth-of-a-second delay
from the subsequent attribute.

The tests were conducted using this type of machine.
Other machine types with varying operating systems,
browsers, and hardware produced similar results.

Machine Specifications:

• MacBook Pro

• 2.6 GHz Intel Core i7 6-core

• AMD Radeon Pro 5300M 4 GB

• 16 GB 2667 MHz DDR4

• MacOS 13.4.1 (c) (22F770820d)

• Google Chrome 117.0.5938.149 (Official Build)
(x86_64)

Two tests were created using the Performance tool of
Chrome DevTool version 117. The tested versions of Taranta
were 1.3.12, the version without the refactor, and 4.2.1, the
version with the complete refactor and some bug fixes in-
troduced after the release of 4.2.0. Both tests ran for 10
seconds, capturing data once the data flow towards Taranta
commenced. The subscription and unsubscription phases
were not recorded.

The first test focused on the Device view. Specifically,
the Attributes tab was tested, wherein data from the 100
attributes, which update every second, is rendered.

Figure 3: Device view benchmark results.

In Fig. 3, we observe the results of version 1.3.12 on the
left, indicating that the majority of the time was dedicated to
scripting. Only 36 milliseconds, out of slightly over 10 sec-
onds in total, were spent idle. In contrast, utilizing version
4.2.1 on the right, we note a significantly reduced scripting
time, with over half the duration spent in the idle state. Ad-
ditionally, it is evident that the data flow in version 1.3.12 is
saturated, while in version 4.2.1, it fluctuates. This suggests
that in the former case, the components struggle to process
the data in time, while in the latter, they manage to do so.
This also justifies the rendering times, which are more than
10 times higher in the second test. This is not due to a slow-
down, but because version 4.2.1, by processing more data,
renders them quickly, thus achieving a higher rendering rate.
Consequently, in the first version, the displayed data was not
up to date, as initially complained by users.

An additional test was performed by creating a dashboard
designed to concentrate data arrivals within specific inter-
vals and observe how the system responded to these data
impulses. The same dashboard was used to test both systems.
The tests were repeated for two dashboards, each containing
300 and 600 widgets, respectively. This was to ascertain
whether the performance scaled in a linear or exponential
manner.

In Fig. 4, the left graph displays the benchmarks for ver-
sion 1.3.12, while the right graph presents those for 4.2.1.
The same test was repeated for 300 widgets, depicted in
the upper section, and for 600 widgets, shown in the lower
section.

It is evident that for 300 widgets, version 1.3.12 still man-
ages to render the data, albeit occasionally reaching satura-
tion. However, for 600 widgets, it is consistently at saturation
and cannot render the data. It is noteworthy that while the
scripting times reach saturation, the rendering times remain
nearly the same, indicating that the components struggle
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Figure 4: Dashboard view benchmark results.

to render the new data. Conversely, in version 4.2.1, the
scripting times increase linearly with the number of wid-
gets, and the rendering time is consistent. This suggests that
the new version scales effectively even with more complex
dashboards.

Below are tables presenting the data obtained from various
tests.

Table 1: Scripting Time Benchmark Results

Test Taranta v. 1.3.12 Taranta v. 2.4.1
Device view 11 013 ms 2051 ms
Dash. 300 widg. 5704 ms 874 ms
Dash. 600 widg. 9702 ms 1667 ms

Table 2: Idle Time Benchmark Results

Test Taranta v. 1.3.12 Taranta v. 2.4.1
Device view 36 ms 5625 ms
Dash. 300 widg. 3987 ms 7946 ms
Dash. 600 widg. 48 ms 7311 ms

CONCLUSION
The article has shed light on how, starting from the issues

identified by users, it was possible to redesign and implement
a version of Taranta that addressed the described architec-
tural problems. In the dedicated testing section, we observed
how specific performance tests conducted to measure the sys-
tem’s performance demonstrated a significant improvement
in the software. Furthermore, during the system’s refac-
toring, we updated libraries and dependencies to address

security risks and vulnerabilities present in the old version.
As anticipated in the section on the architectural solution, be-
sides performance improvement, other architectural aspects
such as testability and extensibility were enhanced.

Testability improved as we decoupled the data source,
TangoGQL, from individual components connected through
the store. This enabled the creation of dedicated tests for
individual components by mocking the store and perform-
ing specific tests for the store and data connection through
middleware testing. The result of this redesign was a signifi-
cant increase in code coverage. Additionally, by decoupling
individual components from the data source, the system’s
extensibility increased. Taranta is no longer tightly coupled
with TangoGQL; we can now rewrite a middleware like Web-
socketMiddleware that handles device subscription and store
management. It will be possible to connect Taranta to other
data sources, whether connected with Tango or not.

However, despite the theoretical simplicity of this last
factor, there is no clear documentation on writing a new
middleware, nor are there other case studies. One poten-
tial improvement could involve expanding the documenta-
tion and creating an alternative prototype to TangoGQL to
demonstrate the system’s extensibility.

Lastly, a mechanism to inform the user of any slowdown
in data updates or a potential block has not yet been im-
plemented. Despite the recent changes resulting in a faster
system and no critical issues observed in updates even with
complex dashboards, the user is still unaware of the delay
between data sending and actual rendering.
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