
TOUCH-SCREEN WEB INTERFACES
L. Zambon*, A. Apollonio, R. Passuello, Elettra Sincrotrone Trieste, Trieste, Italy

Abstract
A touch screen (mobile or not mobile) has a significant

impact on the kind of interaction between humans and
control systems. This paper describes the development of
some widgets and applications based on touch screens. The
technologies used (for example PUMA, JavaScript and
SVG) will be discussed in detail. Also a few tests and use-
cases will be described compared with normal screens,
mouse and keyboard interaction.

INTRODUCTION
A prototype of touch screens was patented in 1946 but

have become familiar to users only since the diffusion of
smartphones and tablets.

Our development is based mainly on 2 JavaScript
libraries: Hammer.js [1] for 2D applications, Three.js [2]
for 3D models.

Data are taken from the Control System thorough PUMA
[3]

2D APPLICATIONS
Hammer.js is a JavaScript library which efficiently

captures gestures. Gestures like tap pinch etc are captured
very quickly and are assimilated to the events produced by
mouse. Any gesture also produces the event start, continue
and stop. All aspects can be effectively customized. By
default all gestures have a correspondence in mouse events
(for example mouse wheel or right click) so the same web
interface can be used on both touch and not touch screens.
Hammer.js was used in our project in conjunction with
SVG (Scalable Vector Graphics) [4]. SVG has been
developed by W3C since1999. It is an XML based 2D
vectorial graphic format, it recognizes paradigms very
similar to CSS and elements can be addressed by
JavaScript like HTML elements.

SVG can be considered as "the" graphic extension of
HTML. Graphic elements can be grouped in a symbol. A
symbol can be repeated many times and can be customized
(for example the filling color) as a unity. Every object can
be translated by a transformation matrix or by a simple
transformation command like translate or rotate. A
significant trick in building circular design was to generate
each element in the upper central position and then rotate
it by a variable angle.

The Knob
The “Knob” (Fig. 1) is a component which allows setting

a value with a user experience similar to a physical knob.
It is composed of two wheels with different colors.

Figure 1: The Knob.

The knob is capable of more than 100 settings per
second, but most control system servers cannot accept such
a setting rate, so the knob implements a configurable
throttling period by default 500 ms. It can be configured to
set values only touching the central button; but the main
task is a continuous flux of settings. The user can change
the scale of the inner wheel (as well as almost all colors
and sizes are configurable). There is an optional chart, a
reset to initial value button and a status indicator. The inner
wheel scale can be adjusted by pressing the plus or minus
green buttons on the bottom. In this case the external wheel
disappears until the original scale is restored.

The Dodecagon
The “Dodecagon” (Fig. 2) is an application in which

each of the 12 sections can be selected. Users can switch
ON, OFF and standby High Voltage power supply and/or
Feedbacks and set a value using the knob component.

Figure 2: The Dodecagon.

 __

* lucio.zambon@elettra.eu

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP036

Software

User Interfaces & User Experience

TUPDP036

591

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 3: 3D model of Elettra. A: with beam position. B: with envelope.

3D MODELS
Three.js “is a cross-browser JavaScript library and

application programming interface (API) used to create
and display animated 3D computer graphics in a web
browser using WebGL.” (Wikipedia)

WebGL basically draws triangles in a 3D space
efficiently using also GPU (Graphic Processing Unit) if
available. Three.js requires Chromium or Firefox.

Three.js was used to construct PAnTHer a 3D model of
a Particle Accelerator on THree.js (Fig. 3).

Our model is loaded from a JSON (JavaScript Object
Notation) lattice file. A few lattice files have been
developed starting from some Matlab (R) m-files. In these
files we also inserted some hooks to the control system in
order to insert some dynamic visualizations.

JSON files are generated programmatically by a PHP
script which can put in evidence the differences between
an already generated file (old file) and the result of the
generation process using the actual m-files (new file)

The JSON file is subdivided in facilities (for example
storage ring or booster) and each facility is an array of
straight sections, normally beginning and ending in a
bending magnet. All other components are placed at a
certain distance from the beginning of the straight section.

A three Dimensional model requires some basic
concepts:

a scene which contains all visible objects, one or more
cameras to observe all visible objects. A mash is composed
of a material and a geometry.

There are a few predefined materials, the main
parameters of a material is the color and transparency.
Color can be substituted by a texture for each face of the
geometry. We used very small texture files for coils and
undulators. There are several predefined geometries, the
simplest is a box.

A geometry can be defined from scratch, it was necessary
only in order to build a tube with a variable elliptical
section in which also the ratio between elliptical axis is
variable (so the shape of ellipses is variable).

The frustum is the area visible; from a camera only a
cone is visible, but for optimization, objects too close and
too far are not rendered. We also implemented a double
frustum that is a different threshold in order to visualize
labels (which are 2D objects) attached to 3D objects.

We implemented about 35 components (Fig. 4), mainly
magnets among them: quadrupoles, sextupoles, bpm,
fluorescent screens, some of them are trivial (a box) or
variants of other components. All components are stored in
a folder and there is a synoptic page for developers.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP036

TUPDP036

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

592

Software

User Interfaces & User Experience

Figure 4: Components.

No accelerator machine requires all components, most
require a restricted subset of components. This is the
motivation for grouping components in a bundle, that is a
single JavaScript file containing all components required
for a certain accelerator. Each bundle is automatically
generated by a PHP script which detects the necessary
components from the JSON lattice file and it is stored in
the same folder together with a preview image of each
component. Some components are clearly miming the
reality (Fig.5) others are more symbolic.

Figure 5: Booster sextupole.

For efficiency reason we implemented 3 sets of
components: normal, fast and plus, the fast series is
extremely symbolic in order to consume only a very
limited amount of resources; the normal series is made of
what we believe is the optimal compromise between
resources used and "beauty" of the rendering; the plus

version is aimed to be as beautiful as possible, but requires
the most powerful GPU, graphical boards and several
Gigabytes of memory, by now it is only a draft, we moved
in this series the RoundedBoxGeometry (that is a box with
rounded edges) when we realized that it was very memory
consuming. This was the result of an analysis performed
when we detected a clear slowing down of normal
visualization which didn't affect the fast one.

We created a super bundle which included both normal
and fast bundles and we added the possibility to pick the
normal or fast version of each component independently.
For each setup we measured the memory used. Although
the browser doesn't release the memory immediately when
it isn’t necessary any more, it was clear that the
components using the RoundedBoxGeometry increased
the request of memory between 1000% and 2000%; so we
decided to move it in the plus series.

It is possible to put in evidence one or more components
reducing the size of all other components. The ratio of
reduction can be adjusted dynamically (also the browser
address bar is updated instantly). The result is a specialized
synoptic of a given component.

Settings can be applied with a popup knob (the same
SVG component described previously)

On top right corner there is a configuration menu
implemented thorough lil-gui library [5], which is already
included in Three.js, but it was extended adding two
features: small icons used as buttons and the knob
described above (Fig. 6).

Figure 6: Configuration Menu.

The PAnTHer development is aimed at visualizing live
data from the machine or from simulators. Clicking or
tapping on almost all components opens a popup
displaying the main parameters of the object (for example
a current or a position). In some cases there is a link to an
external web application controlling that device.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP036

Software

User Interfaces & User Experience

TUPDP036

593

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

The component clicked is outlined by a blinking gradient
highlight around the 2D form of the object (Fig. 3).

There is a component search engine with autocompletion
suggested, based on JQuery UI autocomplete widget.

The most interesting features are 3 synoptic views:
envelope, BPM (Beam Position Monitor) and BLM (Beam
Loss Monitor)

Envelope (Fig. 3) is a transparent tube proportional to
the statistical dimension of the beam magnified by a 10
million factor; envelope data is taken from a simulator; it
would be also possible to zoom inside the vacuum chamber
and find the beam in real dimension, but in this case it
would be visible only in a few points at a time; instead with
the magnification a synoptic view is possible.

BLMs data is displayed as a histogram with values on
both sides of straight sections. All numeric data is
displayed in a side flexbox table and the length of the
histogram bars are calculated with a saturated logarithmic
formula (Fig. 7).

Figure 7: Beam Loss Monitors.

BPMs are the source of the data used to show the
trajectory of the beam magnified by a factor 10M; in case
of failure one or more BPMs can be excluded from the
visualization using the skip attribute in the lattice file. BPM
trajectory can be saved with a name (for example 2GeV or
2.4GeV) and can be used as a reference (with a different
color) visualized together with the actual trajectory
(Fig. 3).

CONCLUSION
The interaction with the knob component on a touch

screen is considered by some users more similar to the
interaction with a real knob than to the equivalent mouse
interaction.

Until now PAnTHer received both enthusiastic and
skeptical feedback. At first glance it is quite surprising; but
the look and feel of 3D isn't appreciated by all users.

Anyway PAnTHer demonstrated that even very complex
web applications may be as performing as embedded
applications and that the times of development, debugging
and updating of web applications may be considerably
shorter than some embedded applications.

A live demo is at https://luciozambon.altervista.org/
app/panther.php, source code are available at
https://gitlab.elettra.eu/puma/client/web/-/tree/master/
panther/

ACKNOWLEDGEMENTS
We acknowledge Giulio Gaio for dozens of ideas;

Francesco Tripaldi and Enzo Benfatto for some very useful
suggestions. Luca Sturari, Claudio Scafuri and Stefano
Krecic for several lattice and mechanical models.

A special acknowledgement to Roberto Marizza, now
retired, who many years ago pointed out the aeronautical
industry idea of gauges keeping the default lancet position
fixed on top center and having the gear to move according
to the situation.

REFERENCES
[1] Hammer.js, https://hammerjs.github.io
[2] Three.js, https://threejs.org
[3] G. Strangolino, and L. Zambon, “Canone 3: a new service and

development framework for the web and platform
independent applications, in Proc. ICALEPCS’21, Shanghai,
China, Oct. 2021, pp. 1023-1028.
doi:10.18429/JACoWICALEPCS2021FRAR02

[4] SVG,
https://developer.mozilla.org/en
US/docs/Web/SVG

[5] Lil-gui, https://lilgui.georgealways.com

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP036

TUPDP036

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

594

Software

User Interfaces & User Experience

