
APPLYING MODEL PREDICTIVE CONTROL TO REGULATE THERMAL
STABILITY OF A HARD X-RAY MONOCHROMATOR USING THE

KARABO SCADA FRAMEWORK
M. A. Smith∗, G. Giovanetti, S. Hauf, I. Karpics, A. Parenti, A. Samadli,

L. Samoylova, A. Silenzi, F. Sohn, P. Zalden, European XFEL, Schenefeld, Germany

Abstract
Model Predictive Control (MPC) is an advanced method

of process control whereby a model is developed for a real-
life system and an optimal control solution is then calculated
and applied to control the system. At each time step, the
MPC controller uses the system model and system state to
minimize a cost function for optimal control. The Karabo
SCADA Framework is a distributed control system devel-
oped specifically for European XFEL facility, consisting of
tens of thousands of hardware and software devices and over
two million attributes to track system state.

This contribution describes the application of the Python
MPC Toolbox within the Karabo SCADA Framework to
solve a monochromator temperature control problem. Ad-
ditionally, the experiences gained in this solution have led
to a generic method to apply MPC to any group of Karabo
SCADA devices.

MONOCHROMATORS AT XFEL
European XFEL [1] operates three beamlines capable of

delivering hard and soft X-rays. For the hard X-ray beam-
lines, silicon monochromators are used to select the pass
band of X-ray energies that continue through to the instru-
ment. The monochromator works by using Bragg’s law,
which gives the relationship between the incident angle of X-
rays on a crystal lattice and the reflected angle. The position
of the crystals is adjustable via motors, in order to control
the incident angle of the X-rays to the silicon crystal’s lattice
structure. Python MPC Toolbox [2] was used to solve a
monochromator temperature control problem.

Thermal drift in a monochromator causes a drift of the
transmitted photon energy. Silicon is commonly used for
Hard X-ray Monochromators due to its good commercial
availability and point of zero thermal expansion around
125 K [3]. To mitigate the impact of temperature jumps
caused by the X-ray pulse trains at European XFEL, the
monochromator temperature has to stay just below this tem-
perature. A CAD drawing of the two crystals mounted inside
a monochromator is shown in Fig. 1. The orange arrow in the
drawing shows the path of the X-ray beam through the two
crystals of the monochromator in a 2-bounce configuration.
To cool the overall monochromator, the silicon crystals are
attached to copper plates which are in turn connected to a
single cryogenic cold head to cool the plates down to around
100 K. Each crystal also has a local heating element for fine
control of each crystal’s individual temperature, along with
∗ michael.smith@xfel.eu

Figure 1: CAD drawing of the X-ray monochromator, show-
ing the path of the X-ray beam through the two silicon crys-
tals of the monochromator. Tx and HTx identify the temper-
ature sensors and heater elements respectively [4].

a temperature sensor for feedback. Because each crystal
is connected to a common cold head, heat applied to one
crystal will have a time-delayed effect on the temperature of
the other crystal via conduction.

In addition to this, the first crystal in the X-ray path is
heated by the X-ray beam. This causes changes in the photon
energy after the first Bragg reflection, which in turn causes
a change in angle for the Bragg reflection from the second
crystal. Tight thermal regulation is very import for ensuring
stability of photon energies and the X-ray beam position.

Modeling the Balance of Energies
The transfer of heat from one crystal to the cryo head can

be modeled according to the thermal conduction Eq. (1),
where U is the overall heat transfer coefficient of the cryo
head, A is the cross sectional area, and 𝑇crystal - 𝑇cryo is the
temperature difference between the crystal and the cryo head.

𝑃cryo =
𝑄cryo

𝑑𝑡
= −𝑈 ∗ 𝐴 ∗ (𝑇crystal − 𝑇cryo) (1)

Additionally, the X-ray beam itself imparts heat energy
onto crystals it encounters and needs to be taken into account
when setting the heater outputs. This power reading is read-
ily available in the control system from an X-ray gas monitor.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP033

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP033

579

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Only a small fraction of this energy is transferred to the crys-
tal, and can be modeled with an experimentally-determined
reduction factor k.

𝑃beam =
𝑄beam
𝑑𝑡

= 𝑘 ∗ 𝑃XGM (2)

In order to regulate the crystal temperature, an external
controllable heat source adds heat to offset the losses to the
cryo head and addition from the X-ray beam. The system
behaviour of one crystal can be described by an equation that
balances the energy transfers of the system. Using Eq. (3),
where m is mass and c is specific heat capacity, we can relate
energy transfers to one crystal with its temperature change.

𝑃crystal =
𝑑𝑄crystal

𝑑𝑡
= 𝑚𝑐

𝑑𝑇crystal

𝑑𝑡
(3)

𝑑𝑇crystal

𝑑𝑡
=

1
𝑚𝑐

∗ (𝑃cryo + 𝑃heater + 𝑃beam) (4)

Equation (4) is an ordinary differential equation (ODE)
that describes the rate of change of the system state (process
variables) of one crystal with respect to its system inputs
(energy inputs and outputs). An equation like this can be
created for each crystal to describe the rates of change of
crystal temperatures in terms of other measurable inputs
from the system. With an ODE for each crystal temperature,
the Python MPC toolbox can generate a software model and
an optimal controller for this system that can be integrated
into a XFEL’s distributed control system.

SOFTWARE REALIZATION OF AN
OPTIMAL MPC CONTROLLER

The Karabo SCADA Framework
The Karabo SCADA Framework is a distributed control

system developed specifically for European XFEL facility,
consisting of tens of thousands of hardware items and plug-
gable software components, called devices, that monitor over
two million attributes. These devices provide a common
software interface to control hardware, read data from sen-
sors, or to create higher-level procedures and functionality
by interfacing to other Karabo devices in a hierarchy. The
Karabo SCADA Framework provides an Application Pro-
gramming Interface (API) in Python called the Middlelayer
API.

The Python MPC Toolbox
The Python MPC Toolbox is a comprehensive python

library that supports creation, simulation, and runtime im-
plementation of MPCs. This toolbox provides a framework
in Python for describing a system’s behaviour by defining
the ordinary differential equations (ODEs) that relate the rate
of change of its process variables to other measurable states
of the system. Once these are defined, a ‘model’ instance is
created and can be used by other parts of the MPC Toolbox
to synthesize an optimal MPC controller as well as a model
simulator.

The MPC toolbox’s Python API lends itself well for use
with the Karabo Middlelayer API. Using the MPC toolbox,
one can program the implementation of all the device’s be-
havioural logic into the definitions of the MPC’s model. The
MPC Toolbox is capable of incorporating arbitrary or non-
linear constraints into the model as well. Outside the MPC
model definition, the software instructions that remain are
needed only to marshall model inputs and outputs to and
from the SCADA network.

Integration of the MPC Toolbox
Fixed model parameters are inputs to the model that are

not sourced from a remote device in the control network.
These are defined in the Karabo device just like other nu-
meric parameters of the device. Karabo has a declarative API
which enables the creation of a generic, reusable datatype
that can update the MPC model parameters seamlessly.
""" example declaration of Karabo parameter
"""
connectionTimeout = Float (

displayedName =" Connection Timeout ",
description =" Maximum time to wait for remote

"
" device connections .",

unitSymbol =Unit.SECONDS ,
maxInc =10.0

)

""" example declaration of Karabo parameter
that auto - updates MPC parameter

"""
temperature1Setpoint = MPCFloat (

displayedName =" XTAL1 Temperature Setpoint ",
description =" Temperature setpoint for the "

" first crystal in the X-ray path",
unitSymbol =Unit. DEGREE_CELSIUS ,
minInc = -200.0 ,
the datatype ’s ’alias ’ is used to declare
the name of the MPC model variable
alias =’T_setpoint1 ’

)

Using these derived classes, MPC model parameters are
exposed in the Karabo device, can be configured at any time,
and the MPC model gets automatically updated. This is used
to implement configurable process control setpoints, fixed
model constants, and even maximum/minimum boundaries
on MPC variables.

Non-linear and other arbitrary constraints can be imposed
on the model through the MPC toolbox API as well. A
Karabo property can be defined and its value used to set
lower and upper terminal bounds on any MPC variable in
the model. The MPC toolbox will respect the limits when it
calculates the next control step. Enable and disable toggles
can also be incorporated into the MPC model this way by
creating a Karabo boolean parameter and multiplying the
parameter’s numeric value of 0 or 1 against a MPC variable
in the model.

With these considerations integrated into the Karabo de-
vice parameters, the main process control loop in the Karabo
device becomes very straight-forward. Model inputs are col-
lected from remote Karabo devices, the next step of the

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP033

TUPDP033

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

580

Software

Control Frameworks for Accelerator & Experiment Control

controller is calculated, then model outputs are written to
remote Karabo devices.
while True:

self. elapsed_time = time.time ()

read system state from device proxies
(get feedback variables from system)
y = [proxy . value for proxy

in self. temperatureProxies]

calculate next set of control actions
u = self.mpc. make_step (y)

apply control actions (write
new values to device proxies)
self. heaterProxies [0]. targetPower = u[0]
self. heaterProxies [1]. targetPower = u[1]

time between control actions is defined
in the MPC as self . mpc. t_step
time_step = self.mpc. t_step - \

(time.time () - self. elapsed_time)
await sleep (time_step)

Simulation and Unit Testing
With a synthesized model, the MPC toolbox can also

create a model simulator for the process under control. This
is of course very useful for confirming the model equations
are defined correctly, and for testing the effect of various
inputs on the model. In this case where we have integrated
MPC into a Karabo device, we also integrate the model
simulator into our Karabo device unit tests.

The Karabo SCADA Framework provides a unit testing
API that allows the creation of mock devices for unit testing.
Creating mock devices with temperature inputs and heater
outputs is a straight-forward effort. With a model simulator,
synthesized from the MPC model, the logic loop in the mock
devices also becomes straight-forward to implement.
self.h1 = MockHeaterControl (

{" _deviceId_ ": " MOCK_H1 ",
" targetPower " : 0.0}

)
self.t1 = MockAnalogInput (

{" _deviceId_ ": " MOCK_T1 ",
" value ": -177.70028}

)

print (’Simulating control response ... ’)
while True:

wait for MPC under test to
write new heater output values
await waitUntilNew (self.h1. targetPower ,

self.h2. targetPower)

use those outputs to simulate the
next increment in system behaviour
u0 = [self.h1. targetPower .value ,

self.h2. targetPower . value]

y_next = self. simulator . make_step (u0)

set temperature sensors to
simulated values
self.t1. value = y_next [0]
self.t2. value = y_next [1]

Leveraging the models generated by the MPC Toolbox,
the effort of simulating the system behaviour in unit tests is
greatly reduced. From this same model, a simulator can be
synthesized and programming effort can now be re-directed
into writing verification of the MPC controller’s behaviour
in the unit test framework. For example, a unit test could
setup initial conditions meant to drive heater outputs to their
maximums, and then test that the boundary conditions in the
device configuration:

1. have been passed to the model, and
2. the heater output calculated by the model does not ex-

ceed them.

RESULTS
Previously, the setpoint temperature for the monochroma-

tors was controlled by manually adjusting the two heater out-
puts per monochromator until an equilibrium was achieved
around -180 ◦C. The temperature changes over time were
monitored using the Karabo control system and occasionally
heater adjustments were made.

In Fig. 2, the temperature stability of the system over sev-
eral hours can be observed, both before and after the MPC
regulation is activated. In addition, it is very difficult to
tune the system so that both crystal temperatures are exactly
the same since heater input from one crystal will eventually
affect the temperature of the other. Additionally, the temper-
atures will also vary depending on the power of the X-ray
beam passing though them.

The Karabo device based on the MPC toolkit was
deployed to control two monochromator devices in the
Femosecond X-ray Experiments (FXE) instrument in
September 2022. When the regulator is active, it is able
to bring the two crystal temperatures to the setpoint of -
180 ◦C within a few minutes and hold the temperature with
a standard deviation of 0.006 ◦C. A zoomed-in view of the
regulator being activated is shown in Fig. 3. The process to
be controlled has quite a slow time scale, so it was sufficient
for the MPC to calculate and update the heater outputs once
every 10 seconds to get this result.

The constant parameters in the MPC formula were ex-
posed as Karabo device attributes and were easily tunable
during testing to find ideal values. Once these values were
determined, they were used by the software as device con-
figuration for the unit tests. This allows the simulator to
respond the same way as the actual system would for our
software unit tests.

The overall result is improved temperature stability in
the monochromator devices. In addition, the simulator syn-
thesized based on the same model use to synthesize the
controller can be used to observe how the controller would
behave under any initial conditions defined in a software
test.

CONCLUSION
This implementation demonstrates that it is possible to

capture all the control logic of a high-level process con-
trol device into a software model using the MPC Toolbox.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP033

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP033

581

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 2: Temperature plot of both monochromator crystals in ◦C, showing the temperature regulation before and after the
MPC is activated.

Figure 3: Temperature plot of both monochromator crystals in ◦C, showing the transition with only a minor overshoot of
less than 10%.

Once the model has been synthesized, the effort of writing
a control system device is reduced to defining device con-
figuration for the model’s constant parameters and writing
code to read and write attributes from other remote control
system devices. Additionally, the model is fully reusable for
unit testing and simulation so there is no duplicated effort in
writing code to model the system behavior for the purposes
of simulation or unit testing.

The resulting software device now serves as a template for
implementing a Karabo device to realize model predictive
control.

REFERENCES
[1] S. Hauf et al., “The Karabo distributed control system”, J.

Synchrotron Radiat., vol. 26, no. 5, pp. 1448–1461, Sep. 2019.
doi:10.1107/S1600577519006696

[2] The Python Model Predictive Control Toolbox, 2023,
https://www.do-mpc.com

[3] T. Middelmann et al., “Thermal expansion coefficient of sin-
gle crystal silicon from 7K to 293K”, Phys. Rev. B, vol. 92,
p. 174113, Nov. 2015.
doi:10.1103/PhysRevB.92.174113

[4] H. Sinn et al., “X-Ray Optics and Beam Transport”, EuXFEL,
Hamburg, Germany, Rep. XFEL.EU TR-2012-006, Dec. 2012.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP033

TUPDP033

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

582

Software

Control Frameworks for Accelerator & Experiment Control

