
BOARD BRING-UP WITH
FPGA FRAMEWORK AND ChimeraTK ON Yocto∗

J. Georg1†, A. Barker1, Ł. Butkowski1, M. Hierholzer1, M. Killenberg1,
T. Kozak1, N. Omidsajedi1, M. Randall1, D. Rothe1, N. Shehzad1, C. Willner1, K. Zenker2

1Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
2Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany

Abstract
This paper will showcase our experience in board bring-

up using our Field Programmable Gate Arrays (FPGAs)
Framework (FWK) and ChimeraTK, our C++ hardware ab-
straction libraries. The challenges involved in working with
different FPGA vendors will be discussed, as well as how
the framework and libraries help to abstract vendor-specific
details to provide a consistent interface for applications. Our
approach to integrating this framework and libraries with
Yocto, a popular open-source project for building custom
Linux distributions, will be discussed. We will show how
we use Yocto’s flexibility and extensibility to create a cus-
tomized Linux image that includes our FPGA drivers and
tools, and discuss the benefits of this approach for embedded
development. Finally, we will share some of our best prac-
tices for board bring-up using our framework and libraries,
including tips for debugging and testing. Our experience
with FPGA-based board bring-up using ChimeraTK and
Yocto should be valuable to anyone interested in develop-
ing embedded systems with FPGA technology.

INTRODUCTION
New challenges in accelerator operations are frequently

met with the introduction of custom-built hardware that can
perform time-critical computing tasks on its own. While the
bulk of these tasks are usually implemented in Field Pro-
grammable Gate Arrays (FPGA), they are not free from the
need of user interaction – for example for run-time modifi-
cation of algorithm parameters or status monitoring. Finally,
the acquired data needs to be exposed to the surrounding
control environment.

Problem Description
Often enough, the user-facing part of such software is

written from scratch for each new piece of hardware. This
can lead to a considerable delay in the availability of the
hardware to the introduction of the hardware into the control
environment, slowing down feed-back loops between users
of the hardware and the developers of the on-hardware al-
gorithms. This can delay the uncovering of problems in the
overall design happening well too late in the development
cycles.
∗ The authors acknowledge support from Deutsches Elektronen-

Synchrotron DESY Hamburg, Germany, a member of the Helmholtz
Association HGF.

† jens.georg@desy.de

On top of that, the resulting software is often tailored to the
facility that developed the hardware, limiting the re-usability
of the hard- and software elsewhere without extensive adap-
tation.

Our Solution
The solution we are presenting below is tying together

several building blocks that have been developed at the Ac-
celerator Beam Controls (MSK) group in the past few years,
as well as efforts from the global open source community.

We provide a generic software solution by taking advan-
tage of the interoperability of the DESY FWK [1] with the
ChimeraTK [2]. It exposes data to the control system with
minor to no configuration effort, using industry standard pro-
tocols such OPC UA [3] and EPICS [4]. The data can then
easily be consumed by all known scientific control systems
or even industry-standard Supervisory Control and Data Ac-
quisition (SCADA) systems, and hardware can be controlled
likewise where necessary.

Furthermore, by taking advantage of the on-chip com-
puting power of the new generation FPGAs that integrate a
full System on Chip (SoC), it is possible to create a piece
of hardware that can be used in quasi-standalone mode and
directly plugged into the control system’s network environ-
ment without having to write any code that runs on an ex-
ternal computer. This will cut down the time-to-machine
considerably.

OVERVIEW OF THE BUILDING BLOCKS
The final outcome of this work is not one stand-alone

piece of software or configuration. Instead, it consists of
several pieces that have already been in development for
the past years. The major components of the setup shall be
shown below.

Firmware Generation & Hardware Description
The DESY FWK provides the developer with board sup-

port packages (BSP), reusable blocks for recurring firmware
programming tasks and a unified build environment for the
synthesis tools of different FPGA vendors. A complete de-
scription of the DESY FWK is beyond the scope of this
publication. For further detail on the DESY FWK the reader
shall be referred to [5].

One important artifact of the firmware generation process
is the register map file. It provides a machine consumable de-
scription of hardware addresses to user-readable names and

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP025

General

Device Control

TUPDP025

557

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

Application Core

OPC UA Backend EPICS Backend

OPC UA Server EPICS IOC

E
th
e
rn
e
t

E
th
e
rn
e
t

Modbus Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Your
Application

Module

Application Module

Application Module

E
th
e
rn
e
t

Modbus Device

Figure 1: Overview of the ChimeraTK framework.

description of the data transported through those registers.
A snippet of such a register file can be seen in Listing 1.

Listing 1: Example for a register map file. It provides names
for addresses and details on the data. The columns are the
name, the number of elements, the address, the size, an addi-
tional address component, information on the interpretation
of the bits and the access mode of the register.
TIMING.ID 1 0x0080 4 8 32 0 0 RO
TIMING.VERSION 1 0x0084 4 8 32 0 0 RO
TIMING.ENABLE 1 0x0088 4 8 2 0 0 RW
TIMING.SOURCE_SEL 2 0x008C 8 8 8 0 0 RW
TIMING.SYNC_SEL 2 0x0094 8 8 8 0 0 RW
TIMING.DIVIDER_VALUE 2 0x009C 8 8 32 0 0 RW
TIMING.TRIGGER_CNT 2 0x00A4 8 8 32 0 0 RO
TIMING.EXT_TRIGGER_CNT 8 0x00AC 32 8 32 0 0 RO

Hardware Interfacing & Control System Access
ChimeraTK is a C++ framework for building data source

and control-system agnostic software [6]. Figure 1 shows
an overview over the components of ChimeraTK.

At one end of the chain DeviceAccess together with its
backends provides the client access. This can be direct by
hardware connections such as PCIe devices but also to many
networked sources such as Modbus, EPICS or OPC UA. This
list is by no means exhaustive. For a full list of supported
backends refer to [7, 8].

At the other end, the control system adapter [9] together
with its specific adapter implementations, forms the server
interface for publishing data to one specific control system
middleware. Switching between different control system
middlewares can be done without code modification in the
user implementation.

ApplicationCore ties client and server interface together.
It gives the user the ability to implement small and reusable
data processing modules that can be chained to build more
complex algorithms.

ApplicationCore also provides robustness against tem-
porary failure of the data sources by providing automatic
recovery procedures [10].

Yocto and OpenEmbedded
The Yocto project [11] is a joint effort of multiple hard-

ware vendors under the umbrella of the Linux Founda-
tion [12] to create an extensible framework for building
an embedded Linux distribution. It provides the reference
distribution Poky, tools for building and extending the distri-
butions, software bill of materials, reproducible builds and
license checks. Each Yocto release is accompanied by a cu-
rated set of layers from the OpenEmbedded [13] project. A
layer contains meta-data and build descriptions for software
that logically belongs together. Such a build description
for a single piece of software is called a recipe. Figure 2
and the Yocto Project website [14] provide a more in-depth
description of its structure.

Figure 2: Coarse overview of Yocto’s project structure [14].

Many embedded hardware vendors chose to base their
BSP on Yocto. AMD Xilinx chose this option also for their
SoC platforms and provides the Yocto-based PetaLinux dis-
tribution [15].

THE SETUP
Generic Application Servers

At our daily work at MSK we were already confronted
with many hardware devices that just needed periodic read-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP025

TUPDP025

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

558

General

Device Control



out of monitored values and configuration parameters, feed-
ing to more complex upstream servers. To ease the repetitive
efforts, we have implemented the GenericDeviceServer [16],
based on ApplicationCore and DeviceAccess. It uses the con-
figuration facilities that are built into ApplicationCore [17]
to expose a set of devices. In its leanest configuration it will
expose the complete device to the control system as-is.

If this is not intended, the list of exposed variables can
be narrowed further down by using DeviceAccess’s logical
name mapping [18] and by providing a variable mapper
configuration for the chosen control system middleware.

If values from the device need to be transformed before
being exposed to the control system, the logical name map-
ping can be also be used to perform calculations based on
variable contents, such as value conversions. This is accom-
plished using a plug-in for the name mapper. An example
for such a value conversion is shown in Listing 2.

Using these mechanisms, many of the basic use-cases of
software integration of new hardware can already be accom-
plished by simple means of configuration for GenericDe-
viceServer.
Listing 2: Basic example for a thermistor value conversion.
We use ExprTk [19] for the expression evaluation. Expres-
sion inputs are not limited to the target register but can con-
tain data from other sources as well.
<redirectedRegister name="rfModuleTemperature">

<targetDevice>ULOG_RAW</targetDevice>
<targetRegister>RF_THERM1_VTG</targetRegister>
<plugin name="math">

<parameter name="formula">
var B := 3940.0;
var Vd := 5.0;
var R1 := 51000.0;
var Ro := 10000.0;
var To := 298.15;

return [1.0 / (1.0 / B * log(2 * R1 * x /
↩→ 10000.0 / ((Vd - x / 10000.0) * Ro)) + 1.0 / To
↩→ ) - 273.15];

</parameter>
</plugin>

</redirectedRegister>

Userspace Input/Output (UIO)
While traditional FPGA cards were attached to the CPU

using PCI or PCIe, the SoC-based architectures of contem-
porary FPGAs implement communication channels within
the SoC platform itself, e.g. based on Advanced eXtensible
Interface (AXI). Custom peripherals that are implemented
by the developer in the FPGA logic of such a platform would
normally require a custom kernel driver in the Linux op-
erating system. Often one can make use of the UIO [20]
framework instead. It provides a generic driver for memory-
mapped interfaces to register-based hardware and also basic
interrupt support.

We have written a new DeviceAccess backend [21] to ac-
cess such devices transparently from ChimeraTK. The devel-
opment of this backend also included a software-controllable
UIO dummy Linux kernel driver [22] for use in our unit and
conformance test suites [23].

Integration in the Yocto Ecosystem
Through the creation of the ChimeraTK OpenEmbedded

layer meta-chimerak [24] we provide to the community a
very easy way to integrate our framework into any embedded
Linux distribution that is based on Yocto.

Not only do we provide recipes for our core libraries such
as DeviceAccess and ApplicationCore, we also include tool-
ing for updating FPGA firmware, Python bindings to De-
viceAccess, a graphical device monitor QtHardMon1 and
the aforementioned GenericDeviceServer, together with the
OPC UA control system adapter.

The DESY FWK consumes the meta-chimeratk OpenEm-
bedded layer and integrates it into the firmware build for
the SoC-based board. This firmware build also includes a
small embedded Linux distribution based on AMD Xilinx
PetaLinux. It contains the device register map for the spe-
cific configuration of this FPGA at a well-known location
inside the root file system of the embedded Linux.

This enables the user to log into the embedded Linux,
where one can start the pre-installed GenericDeviceServer
and get instant control system integration of the device. The
user can also use the included Jupyter Notebook to use the
DeviceAcces Python bindings for more low-level interaction
or debugging purposes.

Known Limitations
While the use of the GenericDeviceServer might be con-

venient at first, we acknowledge the necessity for more spe-
cific software to be written. However, by using the Yocto-
generated Software Development Kit (SDK), developers are
put into the position to implement their own ChimeraTK
server software directly against the embedded environment.

We also envision situations in which the hardware speci-
fications of the SoC are no longer fitting to the task of the
server. If such a situation occurs, it is possible to switch to
the traditional model of running the server software on an
external CPU, communicating with the hardware through
PCIe. This is a minor change in the configuration of the used
device backend in the ApplicationCore server. No additional
code change is required for this.

EXPERIENCES
The GenericDeviceServer has been deployed at the Euro-

pean XFEL and FLASH facilities, replacing old and unmain-
tained prototype server software on our Ubuntu setups, spar-
ing the MSK Software team a time-consuming full rewrite
of those servers.

The OpenEmbedded layer was already used outside of the
DESY FWK in other embedded projects, giving valuable
feedback on issues that had been seen with non-64bit CPU
architectures [25].

We have provided developers at SOLEIL [26] with early
versions of this setup for feedback on our newly designed
hardware and firmware. This lead to insights into areas that

1 optional due to dependency on Qt and X11

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP025

General

Device Control

TUPDP025

559

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



needed improvement for a better end user experience, such
as the need for improved documentation for the setup of
GenericDeviceServer.

By the time of writing this paper, hardware prototypes
containing this setup are given out to internal users at DESY
to provide early feedback on the FPGA contained firmware
implementation.

CONCLUSION AND OUTLOOK
Through the introduction of a backend for the generic UIO

Linux driver interface and the introduction of the OpenEm-
bedded layer, we have vastly extended the range of devices
that can be used with ChimeraTK.

With the GenericDeviceServer and the DESY FWK we
are in a position to give users hardware that can integrate
into an existing control system environment. It serves as a
platform they can jump start their own development, while
giving us the needed early feedback. This setup has already
been proven to be effective in cutting down development
feedback cycle times and finding issues early.

We plan to add further refinement to the OpenEmbed-
ded layers. One part is to conform to the ptest [27] feature
provided by Yocto, which integrates our software tests in
the distribution’s test suite, and also allows the developer to
disable the test builds for faster turn-around times during
development. The other part is to automatically provide our
Application Programming Interface (API) documentation
inside the Yocto-SDK.

Currently the bring-up of the GenericDeviceServer on the
embedded Linux side still requires some user interaction.
We plan to provide simple means of adding configuration
and automatic start of the service beforehand, if so desired
by the user.

We are also in preparation of adding more control system
adapters to our Yocto layer, with Tango being our main
priority.

REFERENCES
[1] The DESY Open Source FPGA Framework, https:
//gitlab.desy.de/fpgafw/fwk

[2] ChimeraTK C++ framework, https://github.com/
ChimeraTK/

[3] OpenFoundation OPC UA overview, https://
opcfoundation.org/about/opc-technologies/
opc-ua/

[4] EPICS, https://epics-controls.org/
[5] L. Butkowski et al., “The DESY Open Source FPGA Frame-

work”, presented at ICALEPCS’23, Cape Town, South Africa,
Oct 2023, paper MO4AO03, this conference.

[6] M. Killenberg et. al., “Abstracted Hardware and Middleware
Access in Control Applications”, in Proc. ICALEPCS’17,
Barcelona, Spain, 2017, paper TUPHA178, pp. 840–845.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA178

[7] Backends included in DeviceAccess, https://github.
com/ChimeraTK/DeviceAccess/tree/master/
device_backends

[8] Third-party DeviceAccess backends, https://github.
com/ChimeraTK?q=backend&type=all

[9] M. Killenberg et al., "Integrating control applications into dif-
ferent control systems", in Proc. ICALEPCS’15, Melbourne,
Australia, 2015, paper TUD3O05, pp. 581–584.
doi:10.18429/JACoW-ICALEPCS2015-TUD3O05

[10] M. Killenberg et al., “Automated Device Error Handling in
Control Applications”, in Proc. ICALEPCS’21, Shanghai,
Peoples Republic of China, Oct. 2021, pp. 408–412.
doi:10.18429/JACoW-ICALEPCS2021-TUPV012

[11] The Yocto Project, https://www.yoctoproject.org/

[12] The Linux Foundation, https://www.linuxfoundation.
org/

[13] The OpenEmbedded Project, https://www.
openembedded.org/wiki/Main_Page

[14] The Yocto Project Structure, https://www.
yoctoproject.org/software-overview/

[15] Xilinx PetaLinux, https://www.xilinx.com/products/
design-tools/embedded-software/petalinux-sdk.
html

[16] Generic Device Server, https://github.com/
ChimeraTK/GenericDeviceServer

[17] ApplictionCore Server Configuration, https://
chimeratk.github.io/ApplicationCore/master/
configreader.html

[18] ChimeraTK Logical Name Mapping, https://chimeratk.
github.io/DeviceAccess/master/lmap.html

[19] ExprTK, http://www.partow.net/programming/
exprtk/

[20] Linux Userspace I/O, https://www.kernel.org/doc/
html/latest/driver-api/uio-howto.html

[21] DeviceAccess UIO backend, https://github.com/
ChimeraTK/DeviceAccess/tree/master/device_
backends/uio

[22] Linux dummy UIO driver, https://github.com/
ChimeraTK/uio-dummy/

[23] J. Georg et al., “Continuous Integration and Debian Pack-
aging for Rapidly Evolving Software”, presented at
ICALEPCS’23, Cape Town, South Africa, Oct 2023, paper
MO2BCO07, this conference.

[24] ChimeraTK Yocto Layer, https://github.com/
ChimeraTK/meta-chimeratk

[25] Issue report for DeviceAcces on 32 bit platforms, https://
github.com/ChimeraTK/DeviceAccess/issues/256

[26] Synchrotron SOLEIL,
https://www.synchrotron-soleil.fr/en

[27] Yocto PTEST distro feature, https://wiki.
yoctoproject.org/wiki/Ptest

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP025

TUPDP025

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

560

General

Device Control


