
BLUESKY WEB CLIENT AT BESSY II
Huiling He1∗, William Smith1† , Sebastian Sachse1‡ , Gabriel Preuß2§, Ruslan Ovsyannikov2¶

Helmholtz Zentrum Berlin, Berlin, Germany

Abstract
Considering the existing Bluesky control framework at

BESSY II, a web client with React based on Bluesky HTTP
Server is being developed. We hope to achieve a cross-
platform and cross-device system to realize remote control
and monitoring of experiments. The implemented function-
alities for now are monitoring of the Bluesky Queue Server
status, controlling over a Bluesky Run Engine environment,
browsing of Queue Server history as well as editing and run-
ning of Bluesky plans. Challenges around the presentation
of live data using Tiled are explored. This work builds on
that of NSLS II who created a React based web interface
and implements a tool for BESSY II.

INTRODUCTION
In today’s era of rapid digital innovation, web applications

are playing an increasingly significant role in experiment
control. This paper presents a comprehensive exploration of
the Bluesky [1, 2] control system and its web user interface
and offers insights into the integration, development, and
core functionalities.

The motivation behind the innovative web-based inter-
face is twofold. Firstly, it arises from the recognition of the
potential of web applications. Secondly, it aligns with the
adoption of the Bluesky project at Bessy II [3]. Although
current Bluesky applications at Bessy II are underutilized,
they hold great promise for the future of control systems.
Understanding the scalability and versatility of Bluesky con-
trol is crucial. Web user interfaces are needed to meet the
dynamic demands of experimental setups and simplify the
experiment process. Moreover, a web client empowers re-
mote control, enabling users to initiate, monitor and manage
experiments from anywhere with internet access.

Our primary goal of the web client is to gain a compre-
hensive understanding of the Bluesky QueueServer [4] and
its interaction with web operations. This encompasses real-
time status monitoring, console tracking, experimental data
display and experiment execution. These web-based ca-
pabilities aim to replace conventional reliance on manual
instructions with command-line interfaces or Qt GUIs [5] at
experimental stations.

This article delves into the architecture of web interactions
with related back-end servers and databases and provides
a detailed exploration of the functional components for the
Bluesky web client. In the following sections, we will intro-
duce the system architecture, back-end servers with Docker
∗ huiling.he@helmholtz-berlin.de
† william.smith@helmholtz-berlin.de
‡ sebastian.sachse@helmholtz-berlin.de
§ gabriel.preuss@helmholtz-berlin.de
¶ ovsyannikov@helmholtz-berlin.de

usage, layout and functionalities of the web client, software
implementation and conclusion.

BLUESKY WEB CLIENT
System Architecture

The system architecture illustrated in Figure 1, follows
a client-server model with two distinct facets: one for ex-
periment control and the other for data display. Bluesky [1]
components are responsible for experiment control, while
Tiled [6] is dedicated to data presentation.

Figure 1: Server-Client architecture.

On the server side, Bluesky components are configured
and managed within an IPython profile, which grants the
Bluesky QueueServer [4] complete authority. Consequently,
any authorized client can interface with the Bluesky environ-
ment via the Bluesky QueueServer [4]. This architecture has
been successfully deployed at BESSY II [3], accommodate
the demand for Bluesky control with IPython command-line
tools, Qt GUIs [5] and web clients.

The Bluesky Queue Server [4] introduces a queuing sys-
tem that facilitates experiment management, enabling re-
searchers to execute experiments in a queue-based manner.
This works as the cornerstone of the Bluesky web client,
meanwhile, Bluesky HTTP Server [7] operates as a com-
munication bridge to simplify and streamline the interac-
tions between user operations on the web client and Bluesky
QueueServer [4].

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP014

TUPDP014

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

518

General

Device Control



Turning to the client side, the web client integrates with
the Bluesky HTTP Server [7] via HTTP requests and HTTP
responses. These enable data retrieval from the Bluesky
QueueServer and support data submission to it.

For data storage and retrieval, the combination of Mon-
goDB [8] and Tiled [6] take the reins, serve as repositories for
experiment data. With the configuration in Tiled server, We
can view the data from a certain MongoDB on the Tiled web
client. The interaction among Tiled [6] and MongoDB [8]
is also illustrated in Figure 1. Exploration for real-time data
plotting with Tiled is underway.

Docker Usage
In the system architecture shown in Figure 1, there are

multiple servers with complex dependencies that need to sup-
port the web client. In order to run and manage the multiple
servers, Docker Compose [9] is used. Docker Compose is a
tool of Docker [10]. We can use Docker Compose to stream-
line the setup and management of our required services.
It provides a consistent and reproducible environment that
can be easily shared and scaled. Currently, there are seven
services for the Bluesky web client: mongodb, redis, zmq-
proxy, bluesky-queueserver, bluesky-httpserver,
tiled, and bluesky-webclient. In the Figure 2, we can
see the seven services hosted in Docker Compose.

Figure 2: Services in Docker Compose.

The mongodb service is responsible for data storage and
retrieval and is mapped to port 27017 for external access.
The tiled service serves as a data retrieval system, expos-
ing its services on port 8000. The redis service is set
up for caching and high-speed data storage and is accessi-
ble on port 6379. Within the Docker Compose setup, cus-
tom containers are included for zmq-proxy and bluesky-
queueserver. These components are built from Docker
files located in local directories. The zmq-proxy container
listens on ports 5567 and 5568 for communication, while
the bluesky-queueserver container manages the Bluesky
Run Engine [11]. The bluesky-queueserver container
listens on ports 60615 and 60625 and relies on redis, zmq,

and tiled. The bluesky-httpserver listens on port
60610 and provides support for the web client by depend-
ing on the bluesky-queueserver. Finally, the bluesky-
webclient is a React-based web application accessible on
port 3000, and it depends on the bluesky-httpserver.

User Interface Design
Layout and Features To ensure consistency with the

existing Bluesky Qt GUI used by Emil [3], the Bluesky web
client is designed with a similar layout, consisting of seven
sections: Status, RE Manager, Console, Plan Editor, Queue
List, Plan History, and Plot Data. An overview of the layout
is illustrated in Figure 3.

Figure 3: Overview of Bluesky web client.

• Status
This section provides real-time status updates for the
Bluesky Run Engine [11]. Users can open or close the
Run Engine worker environment.

• RE Manager [12]
Users can access information related to the RE Man-
ager [12], including details such as queue status, RE
state, Queue Loop mode, manager state, Queue stop
pending, queue items, history items, and so on.

• Console
It provides users with the capability to monitor Bluesky
QueueServer activities, track queue operations, log cru-
cial events, and access pertinent messages. Users can
expand the console to occupy an entire page by clicking
the arrow on the right side, ensuring comprehensive
visibility into Bluesky QueueServer events.

• Plan Editor
Users can get all available plans defined in the IPython
profile in the Bluesky QueueServer [4]. Upon selecting
a plan, its default parameters are presented, and users
can give input of the plan. With the ’Add to Queue’
button, the plan will be added into the queue list. Op-
erational buttons enable users to resume, stop, abort,
halt, or pause the running plans.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP014

General

Device Control

TUPDP014

519

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



• Queue List
Plans in the queue are listed. Users have control over
starting, stopping, and deleting the queue. Additionally,
the ’Loop’ mode can be toggled on or off. In ’Loop’
mode, the queue continuously repeats, while in ’OFF’
mode, it runs only once. Plan order can be adjusted by
moving plans up or down, and individual plans can be
deleted.

• Plan History
After plan execution, the results and process data are
shown in the plan history table. This section allows
users to access and analyze historical data, including
plan arguments, keyword arguments, user information.
Plans from the history can be added to the queue list,
facilitating the retrieval and reuse of previous execu-
tions.

• Plot Data
Currently, data can be visualized by using the UID of a
plan from Tiled. Future efforts are focused on achieving
real-time data visualization during plan execution.

Software Implementation Inspired by the Bluesky Qt
GUI at Bessy II, the web client strives to replicate the layout,
enhance and integrate various functionalities in Bluesky
QueueServer [4] and Tiled server [6].

React [13] framework is chosen to realize the real-time
data handling, server interactions, and dynamic user inter-
faces for its component-based architecture, cross-platform
compatibility, performance optimization, and extensive de-
veloper ecosystem. Its ability to target both web and mobile
platforms while maintaining code reusability is also advan-
tageous in achieving a cross-device system. TypeScript [14],
considered as the programming language for its ability to
enhance code quality, maintainability, collaboration, and
developer productivity while providing a safety net against
type-related errors. In addition, React has official support
for TypeScript, and many popular libraries offer TypeScript
typings. In order to make the user interface structured and
beautiful, Material UI [15] is used. The components from
Material UI such as Box, Table, Button, IconButton are ini-
tially defined and can be customized. It allows us to focus
on expanding the page functions instead of the CSS format
for each component. Another consideration to use React
and TypeScript is the continuity and scalability with the
NSLS II’s existing web client [16], which also uses the same
structure.

How the web client communicates with the servers is illus-
trated in Figure 4. When performing a web operation such
as adding a plan to the Bluesky QueueServer, React [13]
orchestrates the process by sending HTTP requests to the
Bluesky QueueServer [4]. The Bluesky QueueServer [4]
receives and processes these requests accordingly. Through
the Bluesky HTTP Server [7], we retrieve the HTTP re-
sponses, which React interprets and displays within the web
client. This seamless interaction enables the web client to
receive real-time updates and information from the Bluesky
QueueServer [4].

Furthermore, during the process of data display, the web
client initiates HTTP requests directed towards the Tiled
server. These requests are processed by the Tiled [6] server,
which formulates the corresponding HTTP responses.

Figure 4: Data interaction between Bluesky web client and
back-end applications.

To create the Bluesky web client with React, we can follow
the following steps:

1. Set Up the React Project with TypeScript
Using the following command in the terminal:

npx create-react-app bluesky-
webclient

--template typescript

A React project named ”bluesky-webclient” with Type-
Script support is created.

2. Install Additional Dependencies
Dependencies can be installed using Yarn [17]. For in-
stance, to add Axios [18], use the following command:

yarn add axios

3. Create and Implement Components
First, create React components in TypeScript files.
Next, import and use these components within the main
App component ”App.tsx,” which serves as the main
entry point of the application. Finally, the components
will be visible in the web client. Below is an example
of the code in ”App.tsx”:

// App.tsx
import React from "react";
import Statusbox from "./Statusbox";
import Remanager from "./Remanager";
import Console from "./Console";
import PlanEditor from "./PlanEditor";
import QueueList from "./QueueList";
import History from "./History";
import Plotdata from "./Tiled";

function App() {
return (

<div>
<Statusbox />
<Remanager />
<Console />
<PlanEditor />
<QueueList />
<History />

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP014

TUPDP014

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

520

General

Device Control



<Plotdata />
</div>

);
}
export default App;

4. Run the Application
In the terminal, execute the following command to start
the development server and access the Bluesky web
client in a web browser at ”http://localhost:3000”:

yarn start

When deploying the application in Docker, this step
can be omitted and is typically used in the production
process.

CONCLUSION
The Bluesky Web Client, built upon the foundation of

Bluesky QueueServer [4] and Bluesky HTTP Server [7],
presents an adaptable solution for experiment management
in the realm of scientific research. While acknowledging
the need for diligent attention to challenges like security and
hardware compatibility, it remains powerful by its strengths
in real-time control, remote accessibility, and streamlined
experiment queue management. It fosters collaboration, ig-
nites innovation, and optimizes scientific experimentation
processes.

ACKNOWLEDGEMENT
We gratefully acknowledge the support and resources pro-

vided by the Bluesky team at NSLS II to make this research
and development possible in the first place. We thank our
team members and colleagues for their conscientious execu-
tion, responsibility, cooperation and selfless help throughout
the project.

REFERENCES
[1] Bluesky Project, https://Blueskyproject.io/

[2] Plans, https://nsls-ii.github.io/bluesky/plans.
html

[3] W. Smith, S. Kazarski, R. Muller, P. Schnizer, S. Vadilonga,
and L. Vera Ramirez, “Status of Bluesky Deployment at
BESSY II”, in Proc. ICALEPCS’21, Shanghai, China, Oct.
2021, pp. 1064–1068.
doi:10.18429/JACoW-ICALEPCS2021-FRBR03

[4] Bluesky QueueServer, https://blueskyproject.io/
bluesky-queueserver/

[5] Qt GUI, https://doc.qt.io/qt-6/qtgui-overview.
html

[6] Tiled Server, https://blueskyproject.io/tiled/

[7] Bluesky HTTP Server, https://blueskyproject.io/
bluesky-httpserver/

[8] Mongodb, https://www.mongodb.com/docs/

[9] Docker Compose, https://docs.docker.com/
compose/

[10] Docker, https://www.docker.com/

[11] Bluesky Run Engine, https://nsls-ii.github.io/
bluesky/tutorial.html##the-runengine

[12] Run Engine Manager, https://blueskyproject.io/
bluesky-queueserver/re_manager_api.html

[13] React, https://react.dev/

[14] Typescript, https://www.typescriptlang.org/

[15] Material UI, https://mui.com/

[16] Maksim Rakitin, Stuart Campbell, Daniel Allan, Thomas
Caswell, Dmitri Gavrilov, Marcus Hanwell and Stuart
Wilkins, “Next generation experimental data access at NSLS-
II”, in J. Phys. Conf. Ser., vol. 2380, 2022, p. 012100.
doi:10.1088/1742-6596/2380/1/012100

[17] Yarn, https://yarnpkg.com/

[18] Axios, https://axios-http.com/docs/intro

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP014

General

Device Control

TUPDP014

521

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


