
EXTENDING PHOEBUS DATA BROWSER TO ALTERNATIVE DATA
SOURCES∗

Mihnea Romanovschi† , Ivan Finch1 , Gareth Howells1

1ISIS Neutron and Muon Source, Harwell Campus, Oxfordshire, OX11 0QX, UK

Abstract
The Phoebus user interface to EPICS is an integral part of

the upgraded control system for the ISIS Neutron and Muon
Source accelerators and targets. Phoebus can use the EPICS
Archiver Appliance, which has been deployed as part of the
transition to EPICS, to display the history of PVs. How-
ever, ISIS data historically has and continues to be stored
in the InfluxDB time series database. To enable access to
this data, a Python application to interface between Phoebus
and other databases has been developed. Our implemen-
tation utilises Quart, an asynchronous web framework, to
allow multiple simultaneous data requests. Google Protocol
Buffer (Protobuf), natively supported by Phoebus, is used
for communication between Phoebus and the database. By
employing subclassing, our system can in principle adapt
to different databases, allowing flexibility and extensibility.
Our open-source approach enhances Phoebus’s capabilities,
enabling the community to integrate it within a wider range
of applications.

INTRODUCTION
The Experimental Physics and Industrial Control System

(EPICS) is a set of software tools and applications which
provide a software infrastructure for use in building dis-
tributed control systems to operate devices such as particle
accelerators, large experiments and major telescopes [1].

As part of the transition from the commercial VSystem [2]
to the open-source EPICS, ISIS Accelerator Controls have
deployed the EPICS Archiver Appliance [3] to record data
across the control system. It has been used to archive the
EPICS Process Variables (PVs) from Target Station 1 (TS1),
following its recent upgrade [4].

While the EPICS Archiver Appliance offers several ad-
vantages, such as its seamless integration within the broader
EPICS ecosystem and its lightweight deployment, it has
limitations when applied to dynamic systems where the PV
definitions are evolving. As ISIS has opted for a hybrid
approach to it’s transition to EPICS [5], the PV definitions
are likely to change over time. For example, we recently
swapped from the NTScalar BOOLEAN type to the NTEnum
type for binary PVs. The current state of the EPICS Archiver
Appliance does not easily provide the option to alter the data
type of these PVs. The system lacks flexibility for retroactive
data alterations. Its user API is challenging to integrate into
novel systems, such as Machine Learning (ML) based sys-
tems. These ML systems might require asynchronous data
for training, as mentioned in [6], or heavy use of statistics.
∗ Work supported by Science and Technology Facilities Council (STFC)
† mihnea.romanovschi@stfc.ac.uk

These statistics would need to be placed on the ML appli-
cation. In contrast, InfluxDB offers a Python-like language
called Flux, accessible through its API calls for more flexi-
ble data processing and benefits from a larger open-source
community compared to the EPICS Archiver Appliance [7].
Our group’s preference for InfluxDB stems from the fact
that we’ve been archiving data with it since 2019, accumu-
lating several more years’ worth of data compared to the
EPICS Archiver Appliance, which we only began using for
archiving in 2022. One notable advantage of InfluxDB is
its capability to easily back-fill data, whereas the EPICS
Archiver Appliance lacks this feature.

To address the mentioned limitations while remaining
within the EPICS ecosystem, our team has experimented
with substituting the EPICS Archiver Appliance with In-
fluxDB as the data source for the Phoebus Data Browser.
This involves introducing an additional application to serve
as a mediator between Phoebus Data Browser [8] and In-
fluxDB.

DATABASE WRAPPER

The Database Wrapper is an alternative endpoint for
EPICS application requests, such as the Phoebus Data
Browser, translating them to the chosen database’s API, like
InfluxDB, and sending the databases response in Protobuf [9]
binary via HTTP to the requesting application.

The entire system is divided into four main components,
adhering to a Model-View-Controller design approach (as
depicted in Fig. 1):

• Phoebus Application: the view side of the system; it
displays the control screens and the information from
the archiving database. It also performs requests to
the controller regarding what information is to be dis-
played.

• Quart Server [10]: an asynchronous server that acts as
the controller. It unpacks the HTTP requests and de-
livers data from the model in an asynchronous manner.
This approach minimizes the latency between process-
ing information from a database and presenting it to
Phoebus, ensuring optimal performance.

• Model: Performs the data conversion from the format
that the databases API responds into the format that
Phoebus expects, in this case a Protobuf binary.

• Database: for data collection, statistical analyses
and metadata lookup. For example InfluxDB and
CouchDB [11] respectively.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08

Software

User Interfaces & User Experience

TUMBCMO08

355

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: Overview of Architecture for the Database Wrap-
per applied to the Phoebus Data Browser.

Phoebus
In the context of this application, Phoebus serves as a

PV viewer, enabling us to inspect and perform statistical
analysis on archived PVs. When Phoebus sends a request to
the archiver, it expects an HTTP response in the format of a
Protobuf binary.

To showcase the functionality of the wrapper we
created the PVs: ``t1halo::tc517:read'' and
``r55iwater::ambient:temperature'', which con-
tain random values between 0-100. They exist only as
entries in an InfluxDB bucket.

Figure 2: Overview of the Protobuf reply.

Figure 2 breaks down the format of the Protobuf binary
data that the Quart server sends to Phoebus. The components
are as follows:

• Header (Blue): Represents the metadata, information
about the PV/Channel that we request, for example type,
display settings, limits for alarms. The type is sent in
both the header and body of the response. The header
is separated from the body by a new line.

• Body (Green and Red): The body contains every point
sampled from the archiver separated by new lines. It
also contains the status and severity of any alarms that

have been registered at a given time.
– The value that is packed in the binary can be either

a scalar type or a waveform type. When request-
ing raw data the request defaults to the scalar
type when representing a PV. If optimized is re-
quested then a waveform/vector is returned with
the: mean, standard deviation, max, min, and the
count of the samples used to perform the statis-
tics. The mean will be used to plot the graph in
the Data Browser when the optimized box is
checked in Phoebus.

– The alarm values for severity and status can come
from the archiving source, InfluxDB for example,
or from a different database dedicated to alarms,
for example ElasticSearch.

Figure 3 is an example of a PV with random values that
is archived in a test instance of InfluxDB.

Figures 4–6 showcase the difference between a raw and
optimized call. By default the Database Wrapper has an
aggregated of window of 30 minutes. When Phoebus makes
a request it also specifies the number of points it wants to
be used when computing the statistics, since the requested
samples tend to be in the order of thousands the graph loses
a lot of information, as can be seen in Fig. 4.

Figure 6 is the Inspect Waveform tool from Phoebus ap-
plied to the optimized call.

Figure 7 depicts a collection of alarms associated with the
test PV ``r55iwater::ambient:temperature''. This
illustrates the wrapper’s capability to transmit this informa-
tion by changing the relevant fields for every data point.

Figure 3: Example of a PV archived in InfluxDB and dis-
played in the Phoebus data browser.

Figure 4: Example of optimized call to the Wrapper with an
InfluxDB PV.

Server
The server is an application separate from Phoebus and

the databases that it communicates with. It runs in a Docker

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08

TUMBCMO08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

356

Software

User Interfaces & User Experience



Figure 5: Example of raw call to the Wrapper with the same
InfluxDB PV.

Figure 6: Example of the waveform of the optimized In-
fluxDB PV call.

Figure 7: Example of a PV with “fake” alarms. The status is
NO ALARM but the severity is set to 0. These parameters
are set by the wrapper.

environment using the Green Unicorn HTTP Server, a plat-
form capable of handling multithreaded operations, although
this multithreaded functionality has yet to be used by the
current application. Future development work will exploit
the use of multi-threading to allow communications with
multiple clients and data sources. Since ISIS has opted for a
hybrid transition [5], having access to multiple data sources
would allow us to run the EPICS Archiver Appliance at the
same time with InfluxDB on the same Database Wrapper.

Our current workflow for adding a new Process Variable
(PV) to be archived by a database that the wrapper can inter-
rogate and translate is outlined as follows:

1. Define metadata parameters for the PV in the meta
data database, such as name, type, precision and other
elements for the display. To track this data, we use
CouchDB.

2. Add it to our archiving tool, EPICS Archiver Appliance
or InfluxDB

Figure 8 illustrates the internal operation of the applica-
tion. It handles incoming requests from Phoebus, mimicking
the EPICS Archiver Appliance API. These requests are then
transformed into the appropriate API calls for the chosen
database. When metadata retrieval is required, the server
connects to CouchDB to retrieve the information, converting
it into the Protobuf protocol. Subsequently, this metadata
is incorporated as a header in the response received from
InfluxDB.

Figure 8: Overview of the server internals to form a reply.

Model
To allow for the replication of the EPICS Archiver Appli-

ance API we have opted for an Object Oriented approach
when creating the framework of the application.

The model has three components:
1. API Interface: defines the methods for interacting with

the archive’s data source, as well as methods tailored
for conducting statistical analyses on the available data.

2. MetaAPI: allows for the selection of the payload type
for the data that is collected from the archiver. It also ex-
tracts data related to settings of the PV, such as decimal
precision (PREC) that is sent via the header.

3. AlarmAPI: collects the alarms from different PVs, for
example ElasticSearch. When interrogated it must be
matched with the reply from the API Interface. In case
of missing data, for example a disconnection from the
archiving database or an input/output (I/O) disconnect
of the PV, timestamps might no longer match between
the API Interface and the AlarmAPI, in this case a
default value set in the application can be used.

Figures 9-11 offer an in-depth look at the functions that
a user has to implement to be able to replicate the EPICS
Archiver Appliance API. Figure 9 outlines the minimum
required functionality to reproduce the results presented in
this paper.

FURTHER WORK
Future development is planned to focus on three areas:
1. Modularity: The application currently supports only

one time-series database for archiving at any given time.
Using multiple databases for archiving simultaneously
is not supported. We plan to make it easier to change
between databases and allow for multiple data sources

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08

Software

User Interfaces & User Experience

TUMBCMO08

357

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 9: Overview of the methods that would be required
by the InfluxDB Model in order to replicate the existing
Archiver Appliance API. To replicate the results presented
in Figs. 4–6, the InfluxDB Model requires the implementa-
tion of the operations: getData, mean, min, max, standard
deviation, and count.

Figure 10: Overview of the methods required for the Meta-
Data Model to provide instruction for the formation of the
Protobuf and to correctly display in Phoebus.

Figure 11: Overview of the alarm model. Timestamps need
to be checked and aligned with the data from the archiving
source, InfluxDB in this case.

to be connected for a smooth transition between sys-
tems, for example from the EPICS Archiver Appliance
to InfluxDB.

2. Alarm Handling: As part of the transition to EPICS,
ISIS accelerator alarms will be stored in ElasticSearch
to support the alarm server and alarm logger appli-
cations in Phoebus. The wrapper would therefore be
required to query ElasticSearch to retrieve this data.

3. Testing: The application requires more testing to en-
sure that the EPICS Archiver Appliance API is fully
replicated. At present, the ability to efficiently handle
simultaneous calls for PV statistics to optimize display
is limited and not fully supported.

CONCLUSION

We plan to contribute to the open-source community of
both Phoebus and InfluxDB through this project. This work
provides an example of how the data source for the Phoebus
Data Browser can be extended to databases other than the
EPICS Archiver Appliance without modifying the Phoebus
source code. Through it’s modular design, this has expanded
the options for data archiving, allowing the EPICS commu-
nity to better exploit alternative, open-source tools.

REFERENCES
[1] Experimental physics and industrial control system, https:
//epics-controls.org/

[2] Vsystem, https://www.vista-control.com/

[3] Epics archiving appliance, https://slacmshankar.
github.io/epicsarchiver_docs/index.html

[4] S. Gallimore and M. Fletcher, “ISIS TS1 project summary”,
J. Phys. Conf. Ser., vol. 1021, p. 012 053, 2018.
doi:10.1088/1742-6596/1021/1/012053

[5] I. Finch, “Progress of the EPICS transition at the ISSIS accel-
erators”, presented at ICALPECS 2023, Cape Town, South
Africa, 2023, paper TUPDP108, this conference.

[6] Tensorflow datasets, https://www.tensorflow.org/
api_docs/python/tf/data/Dataset

[7] Influxdb time series data platform, https://www.
influxdata.com/

[8] Phoebus, https://control-system-studio.
readthedocs.io/en/latest/intro.html

[9] Protocol buffers: Google’s data interchange format,
http://google-opensource.blogspot.com/2008/
07/protocol-buffers-googles-data.html

[10] Quart, https://quart.palletsprojects.com/en/
latest/

[11] Apache couchdb, https://couchdb.apache.org/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO08

TUMBCMO08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

358

Software

User Interfaces & User Experience


