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Abstract

High repetition-rate, ultrafast laser systems play a critical
role in a host of modern scientific and industrial applica-
tions. We present a diagnostic and correction scheme for
controlling and determining laser focal position by utilizing
fast wavefront sensor measurements from multiple positions
to train a focal position predictor. This predictor and addi-
tional control algorithms have been integrated into a unified
control interface and FPGA-based controller on beamlines
at the Bella facility at LBNL. An optics section is adjusted
online to provide the desired correction to the focal posi-
tion on millisecond timescales by determining corrections
for an actuator in a telescope section along the beamline.
Our initial proof-of-principle demonstrations leveraged pre-
compiled data and pre-trained networks operating ex-situ
from the laser system. A framework for generating a low-
level hardware description of ML-based correction algo-
rithms on FPGA hardware was coupled directly to the beam-
line using the AMD Xilinx Vitis AI toolchain in conjunction
with deployment scripts. Lastly, we consider the use of
remote computing resources, such as the Sirepo scientific
framework*, to actively update these correction schemes
and deploy models to a production environment.

INTRODUCTION

Laser plasma accelerators (LPAs) rely upon accurate con-
trol of ultrafast lasers, typically Ti:Sapph and Nd:Yag ampli-
fier systems [1]. The BELLA Center at Lawerence Berkeley
National Laboratory (LBNL) features several ultra-short
pulse, high-energy beamlines to develop LPAs. These accel-
erators require highly repeatable, stable interaction points to
generate high-quality electron beams, which necessitates a
collection of active and passive controls to mitigate environ-
mental, mechanical, and component variations.

Recent work has primarily focused on enhancing trans-
verse beam stability [2]. This paper describes a a strategy to
address focal position stability, leveraging a machine learn-
ing (ML) enhanced wavefront diagnostic in tandem with a
Field Programmable Gate Array (FPGA) controller to cor-
rect focal position at a kHz-scale rate. By building a model
of wavefront at the interaction point, it is possible to use a
non-perturbative measurement to calculate the focal posi-
tion.

∗ joshec@radiasoft.net

Table 1: Optimal lens movement vs focal shift and beam
size change. Focus shift is per mm lens translation. Beam
size change is change per mm lens translation.

Shift Size Change

Transmissive Amp3-in 2 mm x1.348
Transmissive Amp4-in 2 mm x1.046
Reflective Amp4-out 1 mm x1.002

FACILITY AND EQUIPMENT
The initial model was created for the BELLA HTU laser

system, shown in Fig. 1. This beamline operates with 1 kHz
seed pulses and a 1 Hz full-power pulse. A HASO FIRST
Shack-Hartmann wavefront sensor was used as the ground-
truth imaging device of the interaction and post-interaction
region, with the pre-interaction region sensor a Thorlabs
WFS20-7AR. A Xilinx Zynq ZCU104 FPGA evaluation kit
was used for testing to provide flexibility during the proto-
type phase, including a variety of customizable I/O, well-
supported manufacturer-provided software, and a variety of
processing options in support of ML operations.

FOCAL POSITION INVESTIGATIONS
To determine the optimal lenses to move for a focal shift,

we looked at the magnitude of the shift at final focus and
the (unwanted) increase in beam size throughout the opti-
cal chain. Table 1 summarizes these parameters for three
different lenses in the telescope.

From these simulations we determined that the reflective
Amp4-out is not ideal as a motorized correction optic for
focal location because it is more weakly responsive, shifting
the focus by only 1 mm per mm translation. Moreover, the
off-axis reflective geometry introduces beam centroid kicks,
even in response to relatively mild beam size variations.
Ultimately, we determined the Amp4-in telescope is the best
choice.

To verify our model, we measured the focal location vs
lens separation at high power. Our measurement used a com-
parable method of capturing leakage from the final steering
mirror thus measuring raw focal location without the need
for further calibration or renormalization. The inset of Fig. 2
provides details of the measured focal position and radius
of curvature taken from the wavefront sensor.

When comparing measurements to the simulation, we
note that the focus shift per mm stage motion depends on the
nominal Amp4-in lens separation. For a perfectly collimated
beam entering the −𝑓1/+𝑓2 telescope, and for a perfectly
collimated beam leaving the telescope (lens separation is
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Figure 1: Diagram of HTU laser system at LBNL, highlighting the proposed correction scheme. Machine learning
techniques are used to correlate a fast, non-perturbative sensor (2) with a high-quality, but perturbative wavefront sensor
(1) which cannot be used for online correction. The resulting online diagnostic is used to deduce variations away from
the desired focal position, which is then corrected for prior to the next shot by changes made to a transmissive lens beam
expander (3).

Figure 2: Focal location vs lens separation.

𝑓2−𝑓1), the slope change is 2 mm focus shift per 1 mm change
in lens separation.

However, for the situation where the lens separation is
NOT equal to 𝑓2−𝑓1, for example because the input beam has
a divergence or the output beam is not perfectly collimated,
this slope will have a different value.

By overlapping the experimental data (red circles) with
the simulation (blue circles), we find a good agreement for
one very specific initial lens separation offset (circa −6 mm).
The slope at this separation is 1.52 mm focal position shift
for every 1 mm lens motion. Figure 2 confirms this result.

This validates the use of a telescoping optic configura-
tion for making controlled adjustments to the laser focal
position. This design was validated through simulation and
experimental measurement.

Input data is also highly affected by the sampling method
and instrument systematics. Figures 3 and 4 show the sys-
tematic effects of instrument settings on the calculated fig-

Figure 3: RoC calculated by Thorlabs Driver vs image reso-
lution.

ure of merit. As camera image resolution is decreased, the
calculated Radius of Curvature increases by several mm,
while there is also an increase in overall ‘noise’ in the sig-
nal. These measurements were not taken with an equivalent
ground truth image, and thus our assumption is that switch-
ing into a higher speed mode of operation will come with
corresponding errors that need to be systematically identified
or incorporated in a smart feedback mechanism.

MODEL DEVELOPMENT
Several datasets were collected to examine changes in fo-

cal position on a shot-by-shot basis. The intra- and inter-shot
variation over time, as shown in Fig. 5, show millimeters of
variation in the calculated radius of curvature, highlighting
the need for correction schemes.

Examining the extrapolated focal positions from each
dataset reveals significant discrepancies between the two
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Figure 4: FFT of RoC calculated by Thorlabs driver vs image
resolution.

Figure 5: Representative dataset variation in fitted 𝑍2 calcu-
lation.

sensor measurements. Figure 6 shows a correlation plot
between the two sensors, for which the raw correlation, as
measured by the Pearson’s coefficient between computed
radius of curvature, is only 0.45.

Figure 6: Raw HASO/ThorLabs correlation.

Due to the lack of correlation between the two sensors
using raw pixel data, it became necessary to develop a pre-

Figure 7: Feed-forward network accuracy.

processing flow and system model to accurately capture
systematic differences in the two measurements. We thus
developed and trained a set of neural network models with
the aim of improving the correlation between the two devices.
The output for the trained network was a prediction of the
radius of curvature, to be compared against the HASO WFS
measurement.

Our initial efforts considered two different types of neu-
ral networks – convolutional neural nets (CNN) and more
general feedforward neural nets (FFNN). Each network was
trained using PyTorch, an open source library for developing
machine learning models.

CNNs are designed to operate on images as inputs and
are useful for computer vision applications. Our CNNs
were trained using 12 × 12 pixel-by-pixel image data of the
wavefront from the Thorlabs WFS. We found that the CNN
produced only modest improvements in the correlation, to
upwards of 0.63 from the initial value of 0.45. We thus
transitioned to exploring more general FFNNs.

Our FFNN architecture featured 2-4 fully connected hid-
den layers, ReLU activation functions, and implemented a
robust scaler on inputs and outputs. These features were
chosen to be fast-executing and compatible with our FPGA
deployment strategy. We concluded that the FFNN consis-
tently produced better results than the CNN, but did exhibit
tradeoffs between input space size and network complexity,
with implications for performance at high repetition rate.

The best correlation was found by augmenting the pixel
data with additional Zernike polynomial fitting terms; we
explored several different strategies for generating the fit.
Using the Thorlabs toolkit to produce a 5th order fit provided
an additional 16 terms to include in the input space of the
network, and improved dataset correlation to as high as 0.87,
using only two hidden layers, as shown in Fig. 7.

Using external fitting libraries, such as the Mahotas li-
brary [3], permitted higher order fits, such as a 28-value,
6th-order fit. However, increasing the fit complexity showed
diminishing returns, as correlations did not improve signifi-
cantly, while speed of execution declined. Using a 6th-order
fit does enable a network to be trained using only fitting data
(28 inputs), and can result in comparable performance to
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Table 2: Correlation Values for Different Data

Dataset Pearson
Correlation

Zernike fits only 0.45
CNN - pixel data only 0.63
FFNN - pixel data only 0.82
FFNN - pixel data & Zernike fits 0.87

that of the full set of pixel values. Table 2 summarizes the
correlation performance for each of our approaches.

IMPLEMENTATION
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Figure 8: Testing of PID loop using simulated model at a
number of data update rates.

Both machine learning and traditional control models
were evaluated when looking at how to best correct errors.
Figure 8 shows an estimated PID correction using a con-
trolled designed to work on the 1 kHz seed pulse data (shown
in red). A number of correction rates were simulated, along
with a toy model of the focal position region, allowign for an
estimation of the corrected signal and feedback performance.

While such a controller can operate on incoming data
with no variations in a relatively straightforward manner, the
BELLA laser system and interaction region still contest with
a number of systematic concerns. A model-based control
method allows integrating and learning these issues without
prior knowledge, but can also increase the complexity of the
controller. We are still in the process of evaluating which
controller performance best manages running in the real
experiment, along with instrument errors.

Figure 9 shows the importance of profiling.
A full correction implementation was prototyped using

the FPGA system and was tested on the bench to meet-or-
exceed the operational requirements of the HTU beamline.
This implementation utilized the Xilinx Vitis AI toolkit in
conjunction with the Xilinx Deep Learning Processor (DPU)
to minimize the use of custom FPGA designs and software.

Due to driver limitations of the Thorlabs WFS20 sensor,
in particular being limited to a Windows-based platform,

Figure 9: Trace from Vitis AI profiler showing inference
being run on a single image. A single inference takes a bit
less than 200 µs.

the sensor was unable to be directly connected to the pro-
cessing platform. This necessitated the use of an alternative
data communication channel. This channel was created
in Python using ZeroMQ, and tested to transfer wavefront
data to the processing platform at the limit of the sensor
capture rate (about 0.9 kHz). Validation data from model
development was used to test the model processing perfor-
mance, and achieved a better than 5 kHz throughput, with
well-understood bottlenecks and limitations. Vitis AI [4]
profiling and trace tools were used to determine any issues
with inference and data movement, as shown in Fig. 9. The
DPU takes up a majority of this time, with much of the time
spent handling overheaad outside of the Vitis AI code. Due
to the minimal number of outputs, additional output data
processing should not over-burden the system, enabling per-
formance that meets the 1 kHz seed pulse rate on the HTU
beamline.

Figure 10: Response of motion stage to a request for a move
of 50 µm.

We selected a Zaber Motion X-LDA-A linear stage to
prototype the controller. Initial tests show a need to cor-
rect at the hundreds-of-µm level to suppress noise, but the
bandwidth of the output motion stage is a limiting factor
in how fast the controller can update the system due to a
combination of an internal PID loop and relatively slow se-
rial communication. In addition, the lack of a park feature
means that the system is not easily locked into a set posi-
tion while unpowered, necessitating both an online control
scheme and the ability to transparently communication with
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the motion stage electronics for debug and high-level control.
Figure 10 shows the trace of a requested 50 µm movement
on the prototype motion stage with default stage settings,
showing a settling time from scope start to acheived posi-
tion with 100 nm of about 100 ms. Larger motion requires a
longer settling time, and the motion stage can also take new
requests while already moving.

Figure 11: Feed-forward network accuracy.

The evaluation board is being installed in an off-the-shelf
chassis to simplify rapid procurement. Figure 11 shows the
ZCU104 in a Hammond Manufacturing chassis, allowing
for neater packaging on the beamline.

CONCLUSION
We have demonstrated a model of the BELLA Center

HTU beamline interaction region and developed a correction

method for the focal position. This model, in conjunction
with slow controllers, corrects for measured system varia-
tions in simulation. This method has been demonstrated
in prototype hardware using simulated data and meets-or-
exceeds the necessary performance requirements with room
for expansion and increased model complexity as needed.

Limitations exist in that variations between seed and full-
power pulses might require multiple models for proper cor-
rection. Plans exist to continue this work on additional beam-
lines to develop a flexible, plug-and-play framework for ad-
ditional LPAs.
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