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Abstract
The  64  receptor  (with  20  more  being  built)  radio

telescope in the Karoo, South Africa, comprises of a large
number  of  devices  and  components  connected  to  the
Control  And  Monitoring  (CAM) system via  the  Karoo
Array  Telescope  Communication  Protocol  (KATCP).
KATCP is used extensively for internal communications
between  CAM  components  and  other  subsystems.  A
KATCP interface exposes requests and sensors; sampling
strategies are set on sensors, ranging from several updates
per second to infrequent on-change updates. The sensor
samples are of different types, from small integers to text
fields.  The  samples  and  associated  timestamps  are
permanently  stored  and  made  available  for  scientists,
engineers  and  operators  to  query  and  analyse.  In  this
paper,  I  present  how to  apply  Machine  Learning  tools
which utilise data-driven algorithms and statistical models
to  analyse  data  sets  and  then  draw  inferences  from
identified  patterns  or  make  predictions  based  on  them.
The algorithms learn from the data as they run against it,
as  opposed to traditional  rules-based analytical  systems
that follow explicit instructions. Since this involves data
preprocessing,  I  will  touch  on  how  the  MeerKAT
telescope data storage infrastructure (Katstore) manages
the voluminous variety, velocity and volume of this data.

OVERVIEW OF SENSOR DATA STORAGE
Before delving into how Machine Learning (ML) tools

can be applied to the MeerKAT Control And Monitoring
(CAM), it  is important to first  give an overview of the
storage  infrastructure,  Katstore[1].  CAM  Software
components send data points(samples) to Katstore to save
and  make  available  for  analysis. Katstore  stores  the
values, status and other information about sensors in the
CAM system[2]. These samples received by Katstore are
keyed on time and sensor name. This makes Katstore a
time series database (TSDB),  purposely built  to have a
fixed index on time. The data in Katstore is immutable(no
update on a sample is allowed) and only grows over time.
It can be seen as an append-only database and samples do
not need to arrive in chronological order.

The samples are packed as JavaScript Object Notation
(JSON)[3]  objects  by  the  software  components  that
collected the samples. Any valid JSON is accepted, with
Katstore only requiring that each sample contains the keys
name and time, where name is the sensor name and time
is the time in Coordinated Universal Time (UTC).

Making each sample a document removes the need for
application knowledge in Katstore and future-proofs the
implementation.  New fields can be added and removed
without  requiring  changes  to  Katstore  and  there  is  no
fixed  schema  for  a  sensor  sample.  The  software
components that collect the samples publish the samples
at  intervals  that  can be configured per sensor.  Katstore
subscribes  to  the  per  sensor  archive  subject  on  the
message bus and stores the published samples.

A sensor is  a  fundamental  concept in KATCP and a
collection  of  sensor  types  are  available.  The  following
types  are  currently  supported:  integer,  float,  boolean,
timestamp,  discrete,  address  and string.  Sensors  always
have a  status  and the following statuses  are  supported:
unknown, nominal, warn, error, failure, unreachable and
inactive. In KATCP sensor sampling is performed by the
server  based  on  a  sampling  strategy  provided  by  the
client,  this  allow  every  connection  to  set  up  a  unique
sampling strategy.

{

"name": "m000_rsc_rxl_cryostat_pressure",

"time": 1505982067.202219,

"value": 1013.25,

"status": "nominal",

"value_ts": 1505977839.44

}

Example 1: Sensor data sample.

There are several sampling strategies available ranging
from a fixed time interval  (period)  to  on value change
(event). The sensor data, Example 1, that is collected and
stored in Katstore is enormous and continues to grow over
time.

MeerKAT CAM has many software components, some
components  connect  to  hardware  devices  and  others
connect  to  software  components.  All  inter-component
communication  is  done  with  Karoo  Array  Telescope
Communication Protocol (KATCP). Components can call
requests on connected components for control purposes.
A KATCP request is analogous to method or command
calls  of  other  platforms.  For  monitoring  purposes,
KATCP provides the concept of sensors. For the purpose
of archiving, the components that make up the MeerKAT
CAM system publish sensor samples to different subjects
on the message bus. The publish rate is controlled by the
system configuration. Katstore subscribes to the archive
subjects  and  stores  the  samples  to  the  buffer.  For  the
samples to  be stored,  all  the  MeerKAT CAM software
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components  and  the  hardware  devices  need  to  be  in
operation, preferably optimal state.

APPLICATION OF MACHINE LEARNING
IN MEERKAT CAM

Currently,  SARAO’s  maintenance  staff  relies  on
preventive maintenance to mitigate breakdowns.

Preventive maintenance happens at times that are pre-
set,  often  long  in  advance.  This  is  usually  driven  by
previous  events  and  the  knowledge  and  experience  of
engineers  and  operators.  It  includes  routine,  periodic,
planned,  or  time-based  maintenance.  It  often  prevents
breakdowns,  but  unfortunately it  can be inexact,  which
may lead to expensive maintenance before it’s needed or
to  unnoticed  weaknesses  in  the  maintenance  process.
Furthermore, and of higher importance is the strict Radio
Frequency  Interference  Mitigation  policy  that  SARAO
enforces on site in the Karoo which is aimed at shielding
the equipment from electrical devices. This is very costly
if neglected as it  causes damage to the Telescopes and
related hardware. The costly nature of the hardware also
means  that  inexact,  unwarranted  maintenance  is  at  the
very least costly.

Therein lies the opportunity to investigate in Machine
Learning  techniques  with  the  ability  to  transmit  and
analyse  data  in  real  time,  which  means  that  “in-
operation”  equipment  condition  rather  than  calendars
become the foundation for maintenance protocols exactly
when and where it’s needed.

HOW MACHINE LEARNING WORKS
Machine  learning  (ML)  is  a  subfield  of  Artificial

Intelligence (AI) focused on building computer systems
that learn from data. Depending on the nature of the data
and the desired outcome, one of four learning models can
be  used:  supervised,  unsupervised,  semi-supervised,  or
reinforcement. Within each of these learning models, one
or more algorithmic techniques may be applied – relative
to  the  data  sets  in  use  and  the  intended  results.  These
Machine  learning  algorithms  are  designed  to  classify
objects,  find  patterns,  predict  outcomes,  and  make
informed decisions. ML algorithms can be used one at a
time or combined to achieve the best possible accuracy
when complex and more unpredictable data is involved.

Figure 1: How Machine Learning works.

Figure 1, demonstrates how ML works. ML starts with
raw data(input data) which could be from various sources
depending on a specific domain. The raw data is split into

training data and testing data. Training data is the subset
of the raw data that is used to train the ML model and
testing data is used to verify the accuracy of the model.
The data is gathered and prepared to be used as training
data  or  data  that  the  machine  learning  model  will  be
trained  on,  and  more  data  is  preferred.  A  machine
learning model is then built and  supplied with the data.
The model then trained with the data to find patterns and
make  predictions.  The  model  can  be  tweaked  which
includes changing/varying its  parameters in an effort  to
help  push  towards  accurate  results.  The  training  stage
goes through numerous iterations and tests and analysis of
the  results  is  performed  until  there  is  confidence  in
accuracy  of  the  model  before  it  is  deployed  to  a  live
environment.

Some data is excluded from the training data to be used
as evaluation data, which tests how accurate the machine
learning model is when it is given new data. The result is
a model that can be used with different sets of data in the
future. 

Finally, once the model achieves a high accuracy rate, a
decision can be made to deploy it live where it continues
to be monitored.

MACHINE LEARNING APPLICABLE
FOR MEERKAT CAM

The  vast  amount  of  sensor  data  that  is  archived  in
Katstore  and  logs  from various  components  presents  a
challenge in that it is humanly impossible to look across
all the data and identify patterns. There are a number of
Machine  Learning  strategies  that  can  be  applied  to
MeerKAT  CAM  and  the  glaring  one  is  in  predictive
maintenance  and  monitoring.  First,  a  look  at  what
predictive maintenance is and how it could be applied to
MeerKAT  CAM  and  other  possible  scenarios  that  are
possibly applicable to MeerKAT CAM.

Predictive Maintenance
Predictive maintenance (PdM) is a type of condition-

based  maintenance that  monitors  the  condition  of
hardware  assets  through  sensor  devices.  These  sensor
devices supply data in real-time,  which is  then used to
predict when the asset will require maintenance and thus,
prevent equipment failure. Predictive maintenance is the
most advanced type of maintenance currently available.
With  time-based  maintenance,  one  runs  the  risk  of
performing too much maintenance or not enough. On the
other  hand,  with  reactive  maintenance,  maintenance  is
performed when needed, but at the cost of unscheduled
downtime.  Predictive  maintenance  solves  these  issues.
With PdM, maintenance is only scheduled when specific
conditions are met and before the asset breaks down.
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The  proactive  nature  of  predictive  maintenance
enhances  preventive  maintenance  by  providing
continuous  insights  on  the  actual condition  of  the
equipment rather than relying on the  expected condition
of  the  equipment  based  on  a  historical  baseline.  With
predictive  maintenance,  corrective  maintenance  is  only
carried out when there is a need to do so, and so avoids
incurring  unnecessary  maintenance  costs  and  machine
downtime.  Predictive  maintenance  uses  time  series
historical and failure data to predict the future potential
health  of  equipment  and  so  anticipate  problems  in
advance.  This  could  enable  SARAO  to  optimise
maintenance  scheduling  and  improve  reliability.

Predictive  maintenance  also  differs  from  preventive
maintenance in the diversity and breadth of real-time data
used  in  monitoring  the  equipment.  Various  condition
monitoring  techniques  such  as  sound  (ultrasonic
acoustics), temperature (thermal), lubrication (oil, fluids)
and vibration analysis can identify anomalies and provide
advance  warnings  of  potential  problems.  A  rising
temperature in a component, for example, could indicate
airflow blockages  or  wear  and  tear;  unusual  vibrations
could indicate misalignment of moving parts; changes in
sound can provide early warnings of defects that can’t be
picked up by the human ear.

The key is “the right information at the right time.” In
knowing which equipment needs maintenance, work can
be better scheduled, and unplanned costly shutdowns are
replaced by shorter  and fewer planned shutdowns,  thus
improving  equipment  reliability,  minimising  potential
data loss and reducing maintenance costs. In addition, this
extends the useful lifetime of equipment and optimises the
handling of spare parts. It also increases the productivity
of operations and monitoring teams.

HOW A PREDICTIVE MAINTENANCE
MODEL COULD BE BUILT FOR

MEERKAT CAM
For this paper, the focus will mainly be on three types

of  machine  learning  tasks;  classification,  regression,
optimisation.

Classification refers to a predictive modeling problem
where a class label is predicted for a given example of
input data. For example, given an email, classify if it is
spam or not.

Regression analysis is a predictive modeling technique
that  estimates  the  relationship  between  two  or  more
variables.  It  focuses  on  the  relationship  between  a
dependent (target) variable and an independent variable(s)
(predictors).  An  example  would  be  a  house  being
predicted to sell  for a value in a certain range given a
number of factors(predictors).

Optimisation is the problem of finding a set of inputs
to  an  objective  function  that  results  in  a  maximum or
minimum function evaluation.

The  following  scenarios  amongst  others,  can  be
considered  for  building  a  machine  learning  model  for
MeerKAT CAM as a starting point:

1. Which device is going to fail: a classification
scenario

2. What  is  the  remaining  life  of  a  device:  a
regression scenario

3. Optimisation  scenario:  This  is  an  advanced
ML  scenario  usually  best  applied  once  a
prediction model matures

Considering  the  above  scenarios,  the  first  step  is  to
build a classification or regression model for determining
what  is  the  remaining  life  of  a  machine  or  whether  a
certain device will fail. Once the model achieves maturity,
then  building  an  optimisation  scenario  can  commence.
What generally happens, is that a human takes a look into
the machine learning output and makes a decision. When
a machine  learning model  gets  to  a  mature  stage,  then
instead  of  a  human  making  a  decision,  the  machine
learning model is left to make the decision itself.

The  above  scenarios  could  be  used  as  a  basis  for
brainstorming  which  scenario  makes  the  best  value
proposition for SARAO or MeerKAT CAM.

The next step is to use the archived sensor data, logs
and  other  static  data  to  create  features.  Features  in
machine learning could be described as representation of
data in a form that can be used to map input data to output
predictions. One of the challenges is that most systems,
MeerKAT CAM included, were not built  with machine
learning in consideration. The data needs to be processed
into  a  form  that  algorithms  can  work  on.  Thus,  the
creation of  features is needed in order to bring data into
shape where the algorithm can recognise and work on it.
Once the data is in shape, then an algorithm is selected to
build the model.

Ultimately, the machine learning scenarios mentioned
above  need  to  at  least  make  business  sense.  When
working on a machine learning model, an effort should be
directed  towards  converting  a  business  use  case  into  a
machine learning use case.  Taking the first  scenario of
whether a device will fail or not, there needs to be a clear
definition  in  the  use  case  of  how  the  output  of  the
machine learning model will be used.

The following questions will  inform a decision for a
use  case  which  ultimately  will  get  converted  into  a
hypothesis.

• How the output of the PdM model will be used?

• What  is  the  definition  of  device  failure  or
breakdown?
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• What  signals  have  patterns  of  breakdowns  or
degraded performance?

• The frequency with which signals are collected?

• How much normal and failure data is available?

Forming a hypothesis
A  hypothesis  in  machine  learning  is  a  model  that

approximates a target function and performs mappings of
inputs(data)  to  outputs(predictions).  Given  the
classification and regression scenario of estimating when
a  device  will  fail  or  the  device’s  remaining  life,  the
following hypothesis could be drawn.

• Predict if equipment will fail in the next ‘K’
period

• Predict if equipment will fail in the next ‘K1’,
‘K2’...Kn period

• Predict if equipment will fail in the next ‘K’
period due to fault in part ‘N’

• Predict  time  to  failure  or  remaining  life  of
equipment

• Find anomalies

Once the use case has been converted into a hypothesis,
then perform the data exploration exercise to determine
whether the data set and the use case are in alignment for
this use case or not.

Steps to build a Machine Learning Model
The following, shown in Figure 2, are general steps to

go through when building a machine learning model:

Figure 2: Steps to build a Machine Learning Model.

More often than not,  during data exploration there is
misalignment in terms of the data set and use case. When
this  happens,  you take a step back and decide whether
different  data  is  needed,  or  more  data.  Sometimes,  a
decision could be made to change the use case. In terms
of  data,  SARAO is  in  a  privileged position.  It  will  all
come down to how the data is crafted into features that a
machine learning model can use effectively.

What to look for in Predictive Maintenance
When  building  a  Predictive  Maintenance  model,  for

example for a device in the Telescope Hardware Network
or in some other component of MeerKAT CAM that has
sensor  data  transmitted  from  it,  where  the  aim  is  to
determine when this device will fail - the objective is to
look for patterns in the data exploration such as speed,
efficiency,  pressure,  load  etc  reducing/degrade  as  the
device  gets  older.  Notable  patterns  could  include  the
speed, efficiency, pressure etc being good/optimal when
the device is new and degrading as the device gets older.
Also,  heat,  noise,  vibration  could  start  low  when  the
device is  new and increase as it  ages.  These are  some
patterns that when spotted in the data exploration phase,
could inform a decision in building a machine learning
model for MeerKAT CAM.

Datasets for Predictive Maintenance
Time series data is the most powerful and more useful

for  building  predictive  maintenance  models.  However,
combining  it  with  static  data  provides  a  powerful
overview.  Knowing  when  past  maintenance  or  service
was done on machinery, and adding that to the data set
also makes a model more powerful.

Strategies for creating labels
A label in ML is a description that explains a piece of

data to a model so that it can learn from that description.
For a PdM model, the following actions are used to create
labels amongst others.

• Convert failure signals into a label

• Convert degrade signals into a label

In Predictive Maintenance, one of the issues is that data
labeling is a requirement in most cases. Most of the time
these need to be created. 

Selecting a label for classification
In  the  classification  scenario  to  determine  when  a

device  will  fail,  a  label  needs  to  be  created  for
classification. In MeerKAT CAM signal data is produced
and archived frequently. However,  when a device fails,
that is the final label. In order to catch the failure earlier,
for example 10 days earlier, 10 days of data needs to be
tagged before failure as label data. As such, that becomes
the failure data, which is a positive label. The remaining
data becomes a negative label. Depending on the use case,
a determination is made of how far before the failure, the
failure is to be predicted and then tag that much period
before failure as the label.

Selecting a label for regression
In similar fashion, when trying to predict the remaining

life of a device,  a deep learning model could easily be
built where there is a final failure and the sensor data. The
data can then be tagged at various places, for example,
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how the signal was at 15% life, at 30% life, at 60% life to
enrich the model.

Figure 3: Regression label example.

Figure 3 above is an example of  how from failure data,
calculations could determine how much life was left  at
various intervals before the device. 

Creating features
The next step after having created the right labels is to

create  features.  As  stated  earlier,  features in  machine
learning could be described as representation of data in a
form  that  can  be  used  to  map  input  data  to  output
predictions. The Telescope Hardware Network comprises
multiple  devices,  however  standard  features  could
accommodate most of them. These are listed in Figure 4.
Tumbling or moving averages are widely used since they
are generally good in showing short-term or medium-term
patterns of failures.

Figure 4: Feature example.

Algorithms for Predictive Maintenance
At this  stage,  armed with a use case,  a  data  set  and

labels - it is time to select an algorithm. Figure 5 shows
which algorithms are best suited for each of the scenarios.

Figure 5: Algorithms for Predictive Maintenance.

LOOKING AHEAD
At some point, when the model has matured then one of

the advanced scenarios,  Optimisation scenario, could be
considered.  This  is  when  the  model  is  left  to  make  a
decision. For MeerKAT CAM, one of these cases could
be for example, the cooling system in the Karoo Array
Processor Building(KAPB) which cools all Control And
Monitoring  as  well  as  Science  Data  Processing(SDP)
servers.  An optimisation scenario could be achieved by
using reinforcement learning where the machine learning
model  makes a  decision such as  how much of  cooling
power to use. This could result in energy saving.

CONCLUSION
In order for MeerKAT CAM to keep innovating and

help  Astronomers  and  Scientists  to  advance  future
research, Machine Learning and AI are critical fields to
delve  in.  Monitoring  the  operational  health  of  the
telescopes  and  related  hardware  is  very  crucial  and
machine learning could help in getting more insight which
ultimately could lead to timely informed decisions.

Finally,  the  scale  of  the  data  that  MeerKAT  CAM
software components  send to Katstore to save and make
available  for  analysis  is  such  that  no  human  can  look
across  all  the  data  and  identify  patterns  and  informed
insights from it.
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