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Abstract
Machine learning algorithms enable failure prediction of

large-scale, distributed systems using historical time-series
datasets. Although unsupervised learning algorithms repre-
sent a possibility to detect an evolving variety of anomalies,
they do not provide links between detected data events and
system failures. Additional system knowledge is required
for machine learning algorithms to determine the nature of
detected anomalies, which may represent either healthy sys-
tem behavior or failure precursors. However, knowledge on
failure behavior is expensive to obtain and might only be
available upon pre-selection of anomalous system states us-
ing unsupervised algorithms. Moreover, system knowledge
obtained from evaluation of system states needs to be appro-
priately provided to the algorithms to enable performance
improvements. In this paper, we will present an approach
to efficiently configure the integration of system knowledge
into unsupervised anomaly detection algorithms for failure
prediction. The methodology is based on simulations of fail-
ure modes of electronic circuits. Triggering system failures
based on synthetically generated failure behaviors enables
analysis of the detectability of failures and generation of
different types of datasets containing system knowledge. In
this way, the requirements for type and extend of system
knowledge from different sources can be determined, and
suitable algorithms allowing the integration of additional
data can be identified.

INTRODUCTION
Electronic circuits used for safety-critical equipment must

be fail-safe systems and meet high reliability requirements
by design. Fail-safe radiation monitoring devices used in
particle accelerator environments trigger interlocks upon
failure detection which cut the particle beam. While this
behavior is essential in terms of safety, it also affects the
availability of the accelerators and experiments. Continuous
condition monitoring and failure prediction allows to per-
form predictive maintenance and thus to reduce accelerator
downtime caused by unexpected failures. This study pursues
a data-driven approach allowing online system-level failure
prediction of distributed electronic systems with numerous
instances. However, characteristics for fault detection at a
system level are often complex, diverse and depend on the
circuit layout. A common approach to this problem is to
use unsupervised anomaly detection algorithms to identify
∗ felix.johannes.waldhauser@cern.ch

outlying data samples. In this case, anomalies are detected
empirically as deviating from the majority of samples but
without considering their relation to the system condition or
failure states. Hence, the presented approach aims at integrat-
ing system knowledge into unsupervised anomaly detection
algorithms to establish the link between detected anomalies
and true failure states. By quantifying the increase in per-
formance of anomaly detection algorithms, the potential of
various types of system knowledge for failure prediction can
be assessed. The benchmarking of the algorithms is based on
datasets obtained from SPICE simulations of an electronic
radiation monitoring device. This novel approach combines
failure simulations of electronic circuits and anomaly detec-
tion algorithms to select the most suitable type and extend
of system knowledge for a failure prediction use case. As a
result, the need for resources to generate system knowledge
can be minimized, and predictive maintenance algorithms
can be targeted at an early stage to reduce unexpected failures
and thus increase the availability of large-scale systems.

FRAMEWORK FOR SIMULATION-BASED
FAILURE PREDICTION

Selecting the most promising approach for integrating sys-
tem knowledge into anomaly detection algorithms requires
quantifying the associated change in classification perfor-
mance. Therefore, a fully labeled dataset to benchmark
model predictions is essential. However, in most predictive
maintenance use cases, labeled faults are scarce as the sys-
tem failure conditions can be diverse and evolve over time,
making it difficult to obtain labels for data events, especially
at the transition between normal and abnormal states [1].
Hence, the presented study is based on SPICE simulations
of a demonstrator circuit allowing full control of the circuit
state on a component-level through netlist modifications.
Using simulations as data source provides labeled datasets
of both the healthy and faulty system state, and allows to
generate various types of system knowledge.

The presented approach combines existing methods for
failure simulation and anomaly detection to form a novel
methodology allowing efficient configuration of the integra-
tion of system knowledge into failure prediction algorithms.
The methodology can be subdivided into four main steps,
as shown in Fig. 1. Step I requires definition of the failure
behavior of the circuit components to generate a benchmark-
ing dataset using simulations of the healthy and faulty state.
The detectability study (Step II) aims at evaluating the ef-
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fects of the component degradation on electrical signals.
Information on failure detectability as well as common char-
acteristics of simulated faults can be useful for evaluation of
the algorithm’s performance. In step III, a simulation-based
process to generate different types of system knowledge
needs to be established. Furthermore, the means of supply-
ing this knowledge to selected algorithms which allow the
integration of additional data needs to be defined. In this
study, the term system knowledge refers to labeled data sam-
ples, i.e., information about the true behavior of the circuit
for a specific state. As an example, labels can be assigned
to data samples by a system expert reviewing high-ranked
anomalies. The last step is to benchmark the approaches
by quantifying the increase in performance resulting from
integration of the various types of system knowledge.

Figure 1: Methodology for benchmarking of simulation-
based failure prediction.

Failure behavior and common failure characteristics iden-
tified by analysis of the simulations are limited to the com-
ponent models used in the simulations and are thus not nec-
essarily related to failure characteristics observed in tests
of physical devices. Hence, this paper does not intend to
study failure characteristics of a specific circuit but rather
studies possibilities to enhance failure prediction algorithms
by supplying system knowledge.

BACKGROUND AND RELATED WORK
The demonstrator circuit used in this study is one el-

ement of the CERN Radiation Monitoring Electronics
(CROME) [2]. Mixed-field radiation monitoring systems,
such as CROME, are installed along the accelerator chain at
CERN to protect people and the environment from unjusti-
fied exposure to ionizing radiation. CROME is the newest
generation of radiation monitoring devices and is based on a
System-on-Chip (SoC) architecture. Being an occupational
safety system, CROME devices are connected to the inter-
lock system and cut particle beams if a defined radiation

threshold is exceeded. Due to the fail-safe system design,
which is imperative for safety, detected internal failures will
likewise trigger interlocks and can thus directly impair the
availability of CERN experiments. Despite extremely low
failure rates and high failure detectability by design, predic-
tive maintenance of CROME devices aims at minimizing
unexpected failures by continuous, data-driven failure pre-
diction and condition monitoring.

It has been shown in [3] that unsupervised anomaly detec-
tion algorithms can identify outlying data events in CROME
operational time-series datasets. However, it remains unclear
whether detected anomalies represent failure precursors -
which would require maintenance actions - or rare events
which are technically anomalous but not related to compo-
nent degradation or system failures. To establish this link,
unsupervised algorithms are extended by system knowledge
(and thus become technically semi-supervised algorithms)
to improve the classification performance and thus the prob-
ability that a detected anomaly is failure-related.

Failure simulations of analog circuits, as shown in this
study, are commonly used to benchmark failure detection
algorithms [4, 5], to evaluate failure detectability [6], or to
make design improvements for higher reliability [7]. As
physics-of-failure simulations are often complex, many stud-
ies simulate failures based on changes of component prop-
erties, i.e., by defining explicit value ranges for fault states
deviating from the nominal values [4, 8, 9]. Most system-
level failure detection studies consider binary classification
tasks, i.e., differentiating between the normal and faulty
state [4, 5, 9], whereas [10] train a multi-step algorithm to
localize failures.

To evaluate approaches for using system knowledge for
failure prediction, this study considers two types of algo-
rithms: Isolation Forest and autoencoder. The Isolation
Forest algorithm [11] is an unsupervised algorithm based on
isolation trees assuming that anomalies are rare and different
from the rest of the data and can thus be isolated earlier than
normal samples. The Hybrid Isolation Forest (HIF) [12] is
a semi-supervised version of the Isolation Forest providing
two extensions: an unsupervised extension calculating the
distance to normal data and a supervised extension calcu-
lating the distance to labeled anomalies. Hence, it allows
the integration of known true anomalies, e.g., labeled by a
system expert. Both extensions make use of the decision
tree-like data separation in isolation trees: the dataset is split
on each node with respect to one feature until each sample
reaches its terminal node. The unsupervised extension cal-
culates the centroid of normal data and uses the distance of
the terminal node of a sample to this centroid to introduce a
score 𝑠𝑐. The supervised extension calculates the centroid
of the provided labeled anomalies and uses the distance be-
tween the terminal node of a sample and this centroid to
calculate 𝑠𝑎. Combining the normalized scores ̃𝑠𝑐 and ̃𝑠𝑎
weighted by 𝛼1 and 𝛼2 with the normalized score of the
standard Isolation Forest ̃𝑠 results in the HIF anomaly score
𝑠ℎ𝑖𝑓 for a data sample 𝑥 and sub-sampling size 𝑛 (Eq. (1)
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according to [12]).

𝑠ℎ𝑖𝑓(𝑥, 𝑛) = 𝛼2 ⋅ (𝛼1 ⋅ ̃𝑠(𝑥, 𝑛) + (1 − 𝛼1) ⋅ ̃𝑠𝑐(𝑥))
+ (1 − 𝛼2) ⋅ ̃𝑠𝑎(𝑥)

(1)

The autoencoder is a deep neural network consisting of
an encoder and decoder network which are connected by
a low-dimensional middle layer. Samples are projected to
the middle layer forming a low-dimensional latent represen-
tation of the data. Autoencoders are trained to learn the
latent representation of normal data allowing reconstruc-
tion with low errors whereas anomalies will result in higher
reconstruction errors. Most semi-supervised autoencoder
approaches use labeled (i.e., failure-free) normal data to
train the autoencoder models (e.g., [13, 14]) in contrast to
fully unsupervised approaches using operational datasets
which may be contaminated by faulty system states.

FAILURE SIMULATION USING SPICE
The demonstrator circuit used in this study is one stage of

the power supply circuit of the CROME system. The 24 V
input voltage is filtered and fed to a DC/DC converter (Fig. 2)
which supplies two voltage regulators with 5 V which in turn
generate output voltages at 3.3 V and 2.5 V.
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Figure 2: Snippet of the schematics of the demonstrator
circuit showing the DC/DC converter.

Simulations of the healthy system state allow variations of
the component values within the respective tolerance range.
Failures considered in this study are limited to soft faults, i.e.,
faults caused by component degradation leading to changes
of the component’s properties. Degradation is therefore sim-
ulated using value ranges for component parameters which
cover the interval between one end of the tolerance range
and a defined end-of-life (EOL) criterion. The example in
Fig. 3 refers to the capacitor C50 (see Fig. 2) with a nominal
value of 100 nF and 10 % tolerance range while a reduction
of the capacitance by 20 % is considered as EOL. Failure
simulations are limited to one failing component at a time.
Simulations are therefore classified as ”healthy” if the values
of all components are within the tolerance ranges. If the
value of one component is outside of the tolerance range,
i.e., in the degradation range, the simulation is classified as
”failure”.

Figure 3: Value range for capacitance degradation of C50.

The EOL critera are defined based on the specific type
of each component. Capacitors are the most critical compo-
nents of electronic circuits in terms of reliability [15] while
changes in capacitance or series resistance are usually good
indicators for the capacitor’s condition [15–17]. This study
considers capacitor failures only but could be extended to
other component types, e.g., resistor or inductor degradation,
if a specific value range for degradation is provided.

The capacitors of the demonstrator circuit can be grouped
into two categories: Multilayer Ceramic Capacitors (ML-
CCs) and Tantalum electrolytic capacitors (Ta capacitors).
Typical EOL criteria are 10 % reduction of the capacitance
𝐶 for MLCCs [16, 17] and 20 % reduction for electrolytic
capacitors [18]. Changes of the series resistance 𝑅𝐸𝑆𝑅 are
usually neglected for MLCCs, while a typical EOL criterion
for electrolytic capacitors is an increase of 𝑅𝐸𝑆𝑅 by a factor
of 2 [17]. However, as the tolerance range is ±10 % for most
MLCCs of the demonstrator circuit and ±20 % for Ta capac-
itors, the EOL criteria are shifted towards more advanced
degradation, as shown in Table 1.

Table 1: Selected EOL Criteria for the Simulation of Com-
ponent Degradation

Component Type End-of-Life (EOL) Criterion

MLCC 𝐶/𝐶0 = 80 %

Ta capacitor 𝐶/𝐶0 = 70 %
𝑅𝐸𝑆𝑅/𝑅𝐸𝑆𝑅,0 = 2

Component states for healthy and faulty simulations are
controlled by manipulating the SPICE netlist of the circuit
using a custom netlist-manipulator script handling both the
tolerance and the degradation simulations. Simulations can
be divided into runs and iterations, where one run consists
of 6 iterations. For simulations of the healthy state, the com-
ponent values are varied within the tolerance range at each
iteration. For fault simulations, the degradation of the failing
component is divided into steps, each step corresponding
to one iteration, ultimately covering the entire degradation
range in one run. At each step of the failure simulations, the
parameters of the remaining components are varied within
the tolerance range. This ensures large variation of the simu-
lation results and allows attributing characteristics to compo-
nent degradation while mitigating other interfering effects.
The distribution of component values within the tolerance
range is assumed to be normal which is implemented as a
truncated normal distribution covering 3𝜎 (99.73 %) based
on [19].

Manipulated netlists are fed to the SPICE engine and
simulations are executed on CERN OpenStack VMs ded-
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icated for compute intensive workloads. Simulations are
performed in transient mode for a duration of 10 ms and
data of a selection of current and voltage signals is collected
and stored for further processing. Datasets used through-
out this study consist of statistical measures describing the
characteristics of the raw electrical signals logged during
simulations. Those measures are in the following referred
to as features. Calculated features are common statistical
measures for signal classification: mean, standard deviation,
Root Mean Square (RMS), number of zero crossings, signal
line length, kurtosis and skewness.

FAILURE DETECTABILITY
Restricting the failure simulations to one failing compo-

nent at a time allows to evaluate the effect of the degradation
on the electrical signals for each component and failure type.
As a result, it can be assessed whether and how the degra-
dation of a component can be observed by analysis of the
output signals. However, this analysis only relates to direct
effects while hidden characteristics may still be detected by
deep learning algorithms.

Analysis of the datasets resulting from simulations of
the healthy and faulty states reveals that many component
failures have little or no effect on feature values when com-
paring them to the healthy state. This can be seen in Fig. 4
showing the values of one feature (V(tp15)_line_length, the
line length of the voltage signal at node tp15) against all
simulated failure states and the healthy state (no failing com-
ponent). The naming of the failure states follows the pattern
component:type whereas the type value refers to degrading
capacitance and R_ESR to increasing series resistance.

In Fig. 4, the feature values of the failure states C125:value,
C126:value, and C48:R_ESR partially deviate from the
range of values of the healthy state, which may enable identi-
fication of those failures. However, for the remaining failure
states, feature values are largely overlapping with those of
the healthy state. This behavior applies to most calculated
features with deviations always relating to a limited group
of components. Common characteristics of this group of
failures are exceptionally high signal line length values. Nev-
ertheless, most failures are likely to have little or no direct
impact on the characteristics of voltage or current signals
and may thus be masked as healthy making them hard to
detect.

INTEGRATION OF SYSTEM
KNOWLEDGE

To evaluate the potential improvement in classification
performance resulting from supplying different types of sys-
tem knowledge to anomaly detection algorithms, various
approaches are implemented and compared against. An
overview of algorithms and datasets is shown in Fig. 5. The
schematic illustrates the generation of datasets as well as
methods to integrate system knowledge into the algorithms,
i.e., unsupervised and semi-supervised versions of autoen-
coder and Isolation Forest algorithms. Table 2 provides

C
11

6:
va

lu
e

C
11

7:
va

lu
e

C
12

0:
va

lu
e

C
12

5:
va

lu
e

C
12

6:
va

lu
e

C
13

1:
va

lu
e

C
13

2:
va

lu
e

C
14

3:
va

lu
e

C
14

4:
va

lu
e

C
41

:v
al

ue
C

44
:v

al
ue

C
48

:R
_E

SR
C

48
:v

al
ue

C
50

:v
al

ue
C

59
:v

al
ue

C
62

:v
al

ue
C

65
:v

al
ue

C
80

:v
al

ue
C

81
:v

al
ue

C
82

:v
al

ue
C

99
:v

al
ue

he
al

th
y

Failure state

1.8

1.9

2.0

2.1

2.2

V
(tp

15
)_

lin
e_

le
ng

th

Figure 4: Feature values of V(tp15)_line_length for all sim-
ulated failure states and the healthy state.

an overview of the selected algorithms and the respective
sources of supplied system knowledge. Synthetic tests refer
to the simulation-based generation of samples for healthy
or faulty system states. Expert review relates to assigning
labels to selected samples. Comparison of the classification
performance is done by calculating the Area Under Curve
(AUC) score. AUC is selected as measure for quantifying
the classification performance of all algorithms as it is well-
suited for evaluation of anomaly detection algorithms and
invariant to the classification threshold [20].

Table 2: Summary of Algorithms. AE = Autoencoder,
IF = Isolation Forest, HIF = Hybrid Isolation Forest

Algorithm System Knowledge Source

AE_pseudo_healthy None (unsupervised)
AE_healthytest Synthetic tests of healthy devices
IF_standard None (unsupervised)
HIF_random Expert review, random selection
HIF_score Expert review, score-based selection
HIF_failuretest Synthetic tests triggering failures

Datasets used in this study are obtained from simulations
of the healthy and faulty states of the demonstrator circuit
and consist of statistical measures quantifying the signal char-
acteristics. The contamination of the initial dataset full_data,
i.e., the percentage of samples that originate from failure
simulations, is set to 5 %.

The unsupervised version of the autoencoder
(AE_pseudo_healthy) is trained on data that is as-
sumed to represent the healthy state of the system, but
may nonetheless be contaminated with faults. This pseudo
healthy training data is obtained by selecting the least
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Figure 5: Schematic process for dataset generation, integra-
tion of system knowledge, and benchmarking of the algo-
rithms.

anomalous samples from full_data. More precisely, a stan-
dard unsupervised Isolation Forest algorithm is applied to
full_data and the samples with the lowest anomaly score are
extracted to pseudo_healthy_data. The remaining samples
are used as main benchmark dataset (benchmark_data) for
all algorithms. This split is required to allow unsupervised
training of the AE_pseudo_healthy autoencoder while
testing all algorithms on the same benchmark dataset.

AE_healthytest is a semi-supervised autoencoder algo-
rithm which is trained on system knowledge data col-
lected from simulated tests of virtual healthy devices
(healthytest_data). Here, virtual instances of the demonstra-
tor circuit are created based on the component tolerances.
Simulations of these instances represent hardware tests of
healthy physical instances of the circuit used to generate
data about the normal, i.e., healthy, state. Both autencoders
(AE_pseudo_healthy and AE_healthytest) have the same con-
figuration with 4 hidden layers for both the encoder and de-
coder network, 50 input dimensions, and a two-dimensional
latent space.

Besides autoencoder models, four Isolation Forest-based
algorithms are evaluated: the standard unsupervised Isola-
tion Forest and three versions of the HIF with labeled faults
provided from different sources. Since the parameters 𝛼1
and 𝛼2 (see Eq. (1)) affect the anomaly scores of the HIF
algorithm and thus the classification performance, the con-
figuration of 𝛼1 and 𝛼2 leading to the maximum AUC score

is selected.
The unsupervised IF_standard is applied directly to the

benchmark_data dataset to assess its classification perfor-
mance. All HIF algorithms are likewise applied to bench-
mark_data but are in addition provided with labeled fault
samples. Faults supplied to the HIF_score algorithm are se-
lected based on the anomaly scores of IF_standard. This rep-
resents a manual review process with a system expert review-
ing samples with high anomaly score. Labeled faults are then
supplied back to the algorithm. The HIF_random follows
a similar approach, but instead of using an anomaly score,
labeled faults are selected randomly from benchmark_data.
HIF_failuretest is supplied with labeled faults from simu-
lated tests of faulty devices (failuretest_data). This is done
by creating virtual instances of the demonstrator circuit
based on the defined tolerances, triggering failure modes
during simulation and simulating the degradation using the
EOL criteria defined in Table 1. These simulations represent
reliability tests of physical instances which aim at triggering
specific failure modes to collect data about the system fail-
ure behavior. Here, samples with highest degradation are
supplied first to HIF_failuretest.

BENCHMARKING RESULTS
Analyzing the classification performance of the algo-

rithms shown in Fig. 5 allows to detect potential improve-
ments and to evaluate which algorithms responds best to the
integration of system knowledge. As generation of system
knowledge might be expensive and costs increase with more
data supplied to the algorithms, the performance is analyzed
with respect to the size of the dataset supplied as system
knowledge.

For the semi-supervised autoencoder algorithm,
this size corresponds to the number of simulation
runs of virtual healthy devices (n_healthytest) used
to train the AE_healthytest model. Both autoencoder
algorithms show overall low performance. Neverthe-
less, the semi-supervised AE_healthytest outperforms
the unsupervised AE_pseudo_healthy with a mean
AUC difference of 0.04 (Fig. 6). The performance
of AE_healthytest does not increase with increasing
n_healthytest. AE_pseudo_healthytest is naturally not
related to this parameter but is tested on the same dataset
for each analysis to allow comparison.

In the case of the HIF algorithms, the size of the system
knowledge dataset refers to the number of labeled faults
supplied to the algorithms (n_labeled_faults). IF_standard
shows the lowest performance. HIF_random results in the
highest AUC values with a mean AUC difference of 0.05
compared to IF_standard, but does not improve with increas-
ing number of labeled faults (Fig. 7). The performance of
the HIF_score algorithm is in between the performances of
IF_standard and HIF_random but decreases for more than
10 labeled faults and eventually falls below the performance
of IF_standard for more than 60 labeled faults (not shown
in plot). The performance of the HIF_failuretest algorithm
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AE_healthytest

Figure 6: Comparison of the classification performance of
autoencoder models with respect to the size of the system
knowledge dataset.

is also in between the IF_standard and HIF_random and
increases slightly with an increasing number of supplied
labeled faults.
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Figure 7: Comparison of the classification performance of
Isolation Forest-based algorithms with respect to the size of
the system knowledge dataset.

The resulting performances of all algorithms are subject
to strong variations (see Fig. 6 and Fig. 7), which can be
attributed to the execution process of the analysis. At each
step of the analysis, the full benchmarking process as shown
in Fig. 5 is executed, which is subject to many random pro-
cesses, e.g., the selection of fault samples to be included in
full_data. This can directly affect the classification perfor-
mance and thus cause strong variations of the results.

DISCUSSION
The overall classification performance is low with AUC

values close to 50 % while 50 % corresponds to a random
classifier. Detailed analysis of the healthy versus the failure
behavior showed that characteristics, i.e., values of the cal-
culated features, of many failures are similar to those of the
healthy state (see Fig. 4) making these failures hard to detect.
Hence, many failures may be masked as healthy samples
and lack characteristics that can be used for detection by
the selected algorithms, leading to low classification perfor-
mance. Furthermore, datasets used in this analysis are small
as all samples are generated using computationally intensive
simulations. Accordingly, limiting the analysis to detectable
failures and samples related to advanced degradation as well
as increasing the size of the datasets could lead to better
classification performance.

It has been shown that the semi-supervised autoencoder
AE_healthytest can benefit from labeled healthy data re-
sulting in a higher AUC value for the given task of failure
detection in datasets obtained from simulations. However,
the performance does not increase if more labeled healthy
samples are provided. One possible explanation is the low
variance of provided samples resulting from simulations of
virtual healthy devices. Here, variation in component values
is limited to the initial generation of a device and generated
data of one device shows therefore low variance. As a re-
sult, few simulation runs of virtual healthy devices already
exploit the potential for performance improvement.

While the overall performance of the Isolation Forest and
HIF algorithms is similar to the performance of the autoen-
coders, all HIF algorithms proved to perform better than
the standard IF algorithm, already for a small number of
labeled faults. Random selection of labeled faults provided
to the algorithm resulted in the best performance. Select-
ing labeled samples randomly leads to the greatest variety
in samples, i.e., the most information provided to the al-
gorithm. For the HIF_score algorithm, labeled faults are
high-ranked anomalies that correspond in this study mainly
to a few specific failure states. Providing multiple samples
of only a few failure states can lead to overfitting of the al-
gorithm to those failures while detection of the remaining
failures is reduced leading to a reduction in overall perfor-
mance. Hence, labeling multiple samples that are already
considered as anomalies is in this case not suitable to im-
prove the performance. Samples provided as labeled faults
to HIF_failuretest correspond to a variety of failures trig-
gered by simulations representing reliability tests. Since the
performance increases slightly with an increasing number
of labeled samples, it can be assumed that the algorithm can
benefit from this additional knowledge.

The weak dependency of the performance of the HIF
algorithms on the number of labeled faults may be explained
by consideration of the mechanisms used to integrate labeled
faults into the HIF algorithm. The anomaly score of the HIF
algorithm accounts for the distance of a sample from the
centroid of the labeled faults. Thus, if a sample is close
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to a cluster of known faults, it is likely to be faulty as well.
However, the cluster of known faults becomes more scattered
if the supplied labeled faults have diverse characteristics or
if faults masked as healthy are assigned to the same terminal
nodes as normal samples. In this case, more labeled faults
will result in a greater dispersion of the fault cluster, thus
reducing the effectiveness of the distance measure rather than
providing additional information. This issue is addressed
in [21] by constructing a multi-class HIF algorithm.

In this study, labels assigned to the samples are directly
related to the simulation configuration and are therefore
error-free. However, in reality, obtaining labeled faults from
a manual review, e.g., by system experts, may be difficult
and error-prone, as failure characteristics are not necessarily
obvious or require an explicit definition of the healthy state
for comparison. Especially for randomly selected samples
that are in the transition between the healthy and faulty state,
characteristics allowing classification may be hidden for
manual analysis. Hence, for use cases with complex failure
characteristics, obtaining labeled data of the healthy and
faulty state from hardware tests is preferable over expert
review of data samples. Using data known to be failure-
free to train an autoencoder model can help to improve the
classification performance. Data of the healthy state may be
well-accessible for high-reliability systems with few failures
or easy to obtain from hardware tests of healthy instances.
Further, generating labeled faulty samples from reliability
tests triggering critical failures is suitable to improve the
performance of the HIF algorithm. This approach is also
more promising than manual labeling of samples that already
have a high anomaly score. It has been shown that the size of
the dataset provided as system knowledge does not strongly
affect the performance in this use case. Hence, providing
high-quality data with a variety of samples, e.g., from tests of
both healthy and faulty devices, is preferable over providing
numerous samples with similar characteristics.

SUMMARY AND OUTLOOK
The presented methodology enables simulation-based

benchmarking of failure prediction algorithms to ensure
efficient usage of system knowledge and to study the inter-
action between system knowledge integration and algorithm
performance. Defining healthy and faulty conditions of elec-
tronic components for the simulations gives full control of
the system states and allows generation of several types of
system knowledge. It has been shown that the detectability
of failures and diversity of failure characteristics are highly
relevant for the selection of the best approach. For use cases
where characteristics of failures and normal samples are
overlapping, making expert review difficult, obtaining sys-
tem knowledge from hardware tests is the preferred option.
Testing healthy devices allows generation of datasets suitable
for training of autoencoder models while reliability tests can
provide labeled failure samples which can be fed as system
knowledge to Hybrid Isolation Forest (HIF) algorithms.

Using the presented methodology to develop data-driven

failure prediction algorithms can improve the prediction per-
formance and thus reduce unexpected failures. Therefore,
the availability of large-scale systems can be increased while
limiting the resources required to generate system knowl-
edge.

In this study, the algorithm performance is measured on
the detection of all simulated component failures without
considering the effect of the failures on the circuit operabil-
ity. Hence, the next step is to select only failures which
are directly relevant for predictive maintenance, i.e., fail-
ures that affect the operability and thus need to be predicted
in order to perform maintenance actions. Moreover, only
failures that can be detected on system-level by analyzing
the output signals should be included. This ensures that
the failure prediction algorithm is measured only against
detectable failures, which should improve overall classifica-
tion performance. Information on failures which are critical
for system operability but are considered undetectable can
be useful for design improvements to increase reliability.
In addition, improved feature engineering and optimization
of the algorithms, e.g., by performing noise extraction or
using a multi-class HIF algorithm, can increase the failure
detectability and thus the algorithm performance. More-
over, the empirical observations presented in this study need
to be tested for significance based on statistical design of
experiments (DOE) methods.
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