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Abstract
The transition to EPICS as the control system for the ISIS

Neutron and Muon Source accelerators is an opportunity
to more easily integrate machine learning into operations.
However, developing high-quality machine learning (ML)
models is insufficient. Integration into critical operations
requires good development practices to ensure stability and
reliability during deployment and to allow robust and easy
maintenance. For these reasons we implemented a workflow
for training and deploying models that utilise off-the-shelf,
industry-standard tools such as MLflow. Our experience
of how adoption of these tools can make developer’s lives
easier during the training phase of a project is discussed.
We describe how these tools may be used in an automated
deployment pipeline to allow the ML model to interact with
our EPICS ecosystem through Python-based IOCs within a
containerised environment. This reduces the developer effort
required to produce GUIs to interact with the models within
the ISIS Main Control Room as tools familiar to operators,
such as Phoebus, may be used.

INTRODUCTION
The ISIS Neutron and Muon Source accelerators [1] con-

trol system is presently undergoing a transition from a Vsys-
tem (Vista Control system [2]) to an EPICS (Experimental
Physics and Industrial Control system [3]) based control
system [4].

Alongside this migration, an expansion of data monitoring
and collection systems has been implemented, incorporat-
ing many new software stacks; including but not limited to
EPICS Achiever Appliance [5], and Influx-DB [6] as well as
the related metrics collection and analysis suites (Telegraf,
InfluxDB, Grafana, etc.) [7].

Moreover, a significant milestone has been achieved in
the form of digitisation of the Analog Waveform System
(AWS) [8, 9], which has provided digital waveforms of key
accelerator systems; to date only stored as hourly images of
screen-captures from oscilloscopes.

All of these enhancements along with an increase in the
quality and volume of data, as well as developments in ma-
chine learning frameworks (such as TensorFlow [10] and
PyTorch [11]) and commonly available powerful hardware
accelerators, have enabled the ISIS controls group to lever-
age these advances and begin development of advanced con-
trol, optimisation and monitoring systems.

In this paper, we will discuss the tooling, workflow and
two sample deployments of machine learning projects using
EPICS. We will demonstrate how the deployments conform
∗ mateusz.leputa@stfc.ac.uk

to a user interface that the operators in the ISIS main control
room (MCR) are already familiar with and how the deploy-
ments require minimal setup from the operators side. The
advantages of this workflow are discussed as well as plans
for further development.

MACHINE LEARNING OPERATIONS
Motivation

The ISIS controls group is a relatively small team with
many overlapping responsibilities throughout the accelera-
tor; as such it is an implicit requirement that any software
and infrastructure developed by the team is easy to maintain,
develop and hand over to other members. To that end, the
team follows a set of best practices and principles in their
software and infrastructure development; the core of which
include, but are not limited to:

• Modular Architecture - The team designs software in
a modular fashion, ensuring minimal coupling between
different objects both at the code level and service level
(when said code is deployed).

• Version Control Systems (VCS) - As is standard in
most software development teams the team uses a
version control system (in our case git [12] and Git-
Lab [13]) to manage the code-base. This allows for
tracking changes, better collaboration, and facilitates
continuous knowledge transfer within the team.

• Continuous Integration and Continuous Deploy-
ment (CI/CD) - CI/CD pipelines built on top of the
controls group VCS allows for easy automation of repet-
itive tasks, including but not limited to testing, deploy-
ment, and evaluation of the code-base.

These practices have been singled out due to their signif-
icant impact on productivity relative to the time invested
in their implementation. Consequently, they were chosen
as a baseline requirement for the target machine learning
workflow that the team would adopt.

Machine learning projects also face additional challenges,
these are best exemplified in Burkov’s chapter on why ma-
chine learning projects fail [14]. With the most relevant and
actionable within the current scope of the project being:

• Siloed Organizations and Lack of Collaboration -
Lack of standardised workflows and pipelines leads to
every project being a ”one-off” collection of scripts and
code that only the original developer can realistically
deploy and maintain.
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Figure 1: Machine Learning Project Life cycle, Burkov (2020)

• Missing Data Infrastructure - Lack of easy access to
data, especially through legacy systems and APIs; lack
of standardised ways of obtaining and pre-processing
data, will generally lead to flaky and opaque workflows
that end up being unmaintainable in the long term.

We, therefore, seek to address the machine learning devel-
opment challenges by adopting the already well-established
software development best practices in addition to using
domain-specific tooling and practices with minimal develop-
ment and maintenance overhead. We also aim to minimise
the time machine learning developers spend on non-machine
learning tasks as well as the time required for handovers and
setup of new projects. For the purposes of this paper we will
adopt machine learning lifecycle terminology as described
in Burkov [15] and shown in Fig. 1. We will also generally
refer to the first five steps of Goal Definition though Model
Evaluation as development.

System Architecture and Hardware
Figure 2 represents the current system architecture of the

ISIS controls group machine learning development stack.
Excluding the NFS file share and client applications, each
unit represented in the diagram is a dockerised micro-service.
These services are all located on clustered docker swarm
servers with NFS mounted to the developer’s clients as well
as the remote development servers.

The development servers run an instance of Jupyter-
Hub [16] which manages and launches JupyterLab [17] in-
stances to each system user. Each user has their own private
work area as well as a shared area for collaboration. The
JupyterHub host is a GPU-enabled machine hosting two
Nvidia A100 [18] GPUs.

In the current setup, the use of GPUs is not restricted per
instance but should the need to do so arise one can restrict
the resources using a number of methods ranging from re-
strictions within the client code; such as the TensorFlow’s
or PyTorch’s ability to limit GPU usage to sub-dividing

the GPU using the Multi-Instance GPUs [19] or similar
techniques. The CPU and host memory usage is, however,
restricted through JupyterHub’s configuration.

When users are developing models they use a model
archiving and storage service, in our case MLflow [20], to
archive the training artifacts (such as model files, sample
outputs and model definitions) as well as model performance
metrics recorded during training. MLflow provides a web
front-end that can be used to compare model metrics, take
notes, and mark models as ready for deployment. It also
provides an API to do all of the above in a programmatic
fashion. Note that there is an increasing number of alterna-
tive model archiving and life-cycle management tools with
varying feature sets and commercialisation models to choose
from. MLflow was chosen due to developer familiarity, the
relatively low resource reqired to self-host, a permissive
license, and being fully free and open-source.

The next stage in the workflow is automated using a
docker-hosted model-deployment service. The service is
developed in-house and uses the MLflow API. It checks if
a model has been marked as ready for production and au-
tomatically deploys it to a TF-Serve [21] instance. Torch
models still require manual deployments but TorchServe au-
tomated deployment [22] is under development. TorchServe
is a PyTorch equivalent of TF-Serve. Both frameworks serve
ML models as HTTP/S endpoints for client applications to
access. The client applications are generally lightweight
containerised services that ingest data from users or other
systems (primarily EPICS) and pass the outputs to the front-
end client where the end users of our systems are.

Development
The development environment set up on remote, GPU-

enabled servers has so far proven to be of great advantage
to ML developers. The JupyterLabs simplify the process of
setting up a developer’s workspace and dependencies as well
as providing access the otherwise difficult-to-attain level of
computing resources. Before the deployment of JupyterHub
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Figure 2: System architecture of the ML development setup for the ISIS controls group.

and MLflow, the developers would work entirely locally
on their individual machines (mostly laptops) which made
resource-intensive methods such as hyperparameter searches
impossible. Whilst sharing the code base between the de-
velopers was well facilitated by the usage of git and GitLab,
storage and sharing of data and AI models was not, along
with the training and evaluation results. Moreover, each new
model would require developers’ time spent writing evalua-
tion boilerplate code and model comparison. Much of this
was addressed by the use of a model archiving framework, in
our case MLflow, which through a web UI and an easy API
allows one to track many experiments and make direct com-
parisons of chosen metrics. The models, results, and other
artifacts can now be easily queried from the servers. This
allows the developers to focus on the model quality. Greater
computing resources also allow exploring a larger space of
possible models in a shorter time frame, increasing overall
team throughput. This setup also records the experiments’
state, making a return to shelved or impeded projects easier
for developers.

Deployment
When we started the development of the machine learning

projects within the ISIS controls group, the deployment
process was complex and demanded a significant amount
of manual effort. The software deployment was done using
USB drives, resulting in a relatively long turnaround time
for new features, bug fixes, and model updates.

Recognising that many ML projects shared substantial
amounts of code and had similar requirements, a clear path
to a standardised workflow was established. The new de-
ployment process takes advantage of the MLflow API and
the readily available serving frameworks from TensorFlow
and PyTorch. When a developer reaches an agreed level of
the model’s performance, the model in question is marked as
production-ready using the MLflow web interface. A micro-
service referred to as a model manager periodically checks

the MLFlow database for models with the production tag.
Once such a model is added, it is downloaded and added
to the deployments folder. The serving frameworks then
serve the models as HTTP/S endpoints. The next step of the
deployment is creating a client application, in the example in
Fig. 2 a containerised EPICS pvAccess [23] server that cap-
tures the user input from a Phoebus [24] screen, performs the
necessary formatting to make the request, makes a HTTP/S
request and returns the data to the EPICS control system
as EPICS process variables, which are then displayed on
the operators’ screen. The size of the deployment on the
client side is now only reduced to the size of a Phoebus
client; which in case of most of the operators was already
installed on their machines. This installation is only in the
order of 10s to 100s of MBytes where as a full client installa-
tion would have previously involved including the machine
learning frameworks and other dependencies, which would
frequently sum up to the order of GBytes.

EXAMPLES
This section delves into two distinct machine learning

deployments within ISIS:

• ASTRA Medium Energy Beam Transport Surrogate
model (MEBT)

• Low Energy Beam Transport Optimisation model
(LEBT)

Each is tailored to enhance the performance and control of
different beam transport systems.

ASTRA MEBT Surrogate Model The ASTRA MEBT
Surrogate Model [25] is a PyTorch-based neural network.
It is a surrogate model for the ASTRA particle tracking
code [26] that simulates beam descriptors for the ISIS
Medium Energy Beam Transport. It uses a combination
of incoming beam and machine settings to predict the beam
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(a) ASTRA Phoebus Virtual diagnostic screen (b) LEBT Phoebus Virtual diagnostic screen

Figure 3: Phoebus-based front-end examples for model deployments at ISIS Controls Group

envelope, energy spread, alpha and beta parameters, and
beam loss along the MEBT. The model uses a relatively
straightforward recurrent neural network architecture of 5
layers of 128 nodes each. The model inputs comprise the
machine settings and distance along the MEBT at which we
are predicting the beam parameters at discrete steps along
the length of the instrument. The model is deployed as a
containerised service which in its current state also hosts the
production model, data processing, and a pvAccess server.
Upon change to the model or any of the code-base; the
container is rebuilt, tested, and redeployed using a CI/CD
pipeline. The front end used to control the model can be
seen in Fig. 3a. A deployment that does not host the model
inside the service container, but instead inside the dedicated
model serving frameworks is under active development.

LEBT Optimisation Model The LEBT machine learn-
ing project is a surrogate model for the ISIS Low Energy
Beam Transport used as a tool for tuning and testing opti-
misation offline as ISIS moves towards wider automation
across the control systems. The model inputs comprise 10
parameters defining changes to parameters in the LEBT, pre-
dicting the efficiencies after subsequent components to the
linear accelerator. Similar to the ASTRA MEBT model, the
model is a PyTorch neural network consisting of 3 layers
of 64 nodes. This model is deployed using the TorchServe
service as a HTTPS endpoint which is called by a service
that implements a pvAserver that takes the inputs from the
operator screen shown in Fig. 3b, sends them to the neural
network and displays the output on the operator screen. The
model also includes all the pre- and post-processing, saving
the developers the need to manage three different models.

In both cases, the client utilises the p4p [27] library to
create EPICS PVs (process variables) for each of the inputs
and outputs, as well as some additional PVs calculated from
the outputs if desired by the users. Phoebus is used to create
control screens for each of the clients, although this is purely
for convenience, other tools can be used to create GUIs if
the application requires a user front end.

FUTURE DEVELOPMENTS
Further Automation While most of the existing de-

velopment operations were adopted and adjusted to create
better machine learning workflows, a portion of the work
remains to be automated. For instance the HTTP/S to EPICS
pvAccess services. These, are written manually but share
substantial overlap between deployments; with the only ma-
jor differences consisting of pre- and post-processing steps.
These steps can also be deployed from the model archive as
stand-alone scripts or integrated into the model itself.

At the time of writing only TensorFlow models are auto-
matically deployed from MLflow using the model manager
script. A PyTorch alternative is in development.

Profiling The ASTRA and LEBT models described ear-
lier are relatively simple models with low inference times,
especially when run through serving frameworks on GPU-
enabled servers. The latency for the said queries ranges
between 16 ms to 40 ms when querying the deployed appli-
cations, most of which is attributed to network latency. As
the models that are deployed grow bigger this might not be
the case anymore. Adoption or development of standardised
profiling tools is therefore necessary as larger models and
more applications in parallel will require more efficient use
of available resources.

CONCLUSIONS
This paper presented a comprehensive overview of the

current workflow for developing and deploying machine
learning systems while also discussing possible future devel-
opments to further automate and streamline machine learn-
ing systems development and production. We illustrated
these concepts through the examination of two deployments:
ASTRA MEBT surrogate and LEBT optimisation surrogate.

Through this examination, we have demonstrated the ad-
vantages of the web-hosted development environment as well
as the model archiving system MLflow. The models served
using the MLflow API. Additionally, a road-map towards
achieving a more complete system deployment automation
was discussed.
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