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Abstract 
CamServer is a Python package for data stream pro-

cessing developed at Paul Scherrer Institute (PSI). It is a 
key component of SwissFEL's data acquisition, where it is 
deployed on a cluster of servers and used for displaying 
and processing images from all cameras. It scales linearly 
with the number of servers and is capable of handling mul-
tiple high-resolution cameras at 100 Hz, as well as a variety 
of data types and sources. The processing unit, called a 
pipeline, runs in a private process that can be either perma-
nent or spawned on demand. Pipelines consume and pro-
duce ZMQ streams, but input data can be arbitrary using an 
adapter layer (e.g., EPICS). A proxy server handles re-
quests and creates pipelines on the cluster's worker nodes 
according to rules. Some processing scripts are available 
out of the box (e.g., calculation of standard beam metrics) 
but users can upload custom ones. The system is managed 
via its REST API, using a client library or a GUI applica-
tion. CamServer's output data streams are consumed by a 
variety of client types such as data storage, image visuali-
zation, monitoring and DAQ applications. This work de-
scribes the use of CamServer, the status of the SwissFEL's 
cluster and the development roadmap with plans for SLS 
2.0.  

INTRODUCTION 
SwissFEL is an X-ray free-electron laser facility at Paul 

Scherrer Institute (PSI) [1]. It delivers pulses of X-ray ra-
diation with a duration of a few femtoseconds and operat-
ing at a repetition rate of 100 Hz [2]. The SwissFEL control 
system is based on EPICS [3]. Even though all data sources 
can be accessed via EPICS Channel Access, most of data 
acquired in the machine and beamlines is said to be beam-
synchronous [4], meaning each sampled data record is 
tagged with a pulse identifier. Beam-synchronous data is 
streamed by the EPICS’s IOCs using the in-house devel-
oped BSREAD, a library that provides data serialization 
and stream control over ZMQ [5].  

Timing and synchronization are critical at SwissFEL. All 
beam synchronous sources are connected to the SwissFEL 
timing system [6] that distributes a unique pulse identifier 
for each FEL pulse. Sources send out data through a stream 
stamped with the pulse identifier.  

Beam-synchronous data sources can be used together ef-
fectively when synchronized, meaning that records from 
distinct sources belong to the same pulse. The SwissFEL 
data-acquisition system provides tools for synchronization 
and thus enables online processing of beam-synchronous 
sources. Data channels from different sources can be effi-
ciently aggregated and combined into new data streams.  

Streams from various sources are directed to the Data-
Buffer, which performs functions of data synchronization, 
dispatching and temporary storage (buffering). The Data-
Buffer is an in-house development based on Java Spring 
[7], running in a cluster of 15 servers. Clients can request 
from it synchronized streams containing data from multiple 
sources, where all source values are aligned to the same 
pulse identifier. Data acquisition can be implemented ei-
ther by receiving such streams or by post-retrieving data 
using the DataBuffer REST API, requesting a pulse range 
for a list of channels. Beam-synchronous scalars, wave-
forms and images are streamed at 100 Hz. The DataBuffer 
receives typically 8 GB/s of images, and 450 MB/s of sca-
lars and waveforms, retaining data for some days. 

Over the past decades stream processing [8] has played 
an increasingly critical role on the web and within organi-
zations. It offers low-latency results, enabling immediate 
insights and faster, more informed decision-making. In the 
context of SwissFEL, stream processing provides effective 
online feedback, data reduction, filtering, and therefore re-
source efficiency - saving on processing, storage, and net-
work resources. For example, the machine protection sys-
tem can disable pulses, and stream processing allows for 
the discard of data relating to unfit pulses before processing 
and storage. Additionally, stream processing moves the re-
source intensive processing from clients to servers, while 
standardizing the processing algorithms. 

CamServer was initially created with the goals of provid-
ing unified access to SwissFEL cameras, processing cam-
era data, and streaming images and data forward. With 
time, it evolved into a generic stream processing system for 
SwissFEL. Development started in 2017 and features were 
gradually included over the years. The project is hosted on 
GitHub [9]. Python [10] was the language of choice for the 
project, allowing users to benefit from the well-known Py-
thon scientific stack to implement custom processing algo-
rithms. 

Initially CamServer executed only one standard image 
processing algorithm for the characterization of the beam. 
Later, support to custom processing scripts was added and 
new use-cases were then supported. More than simply 
sending data to visualization clients, CamServer also had 
the capability to send and receive processed data to and 
from the DataBuffer, making it a key component of the 
SwissFEL data acquisition system. CamServer is capable 
of processing generic streams (other from camera sources, 
such as DataBuffer streams), and can merge and synchro-
nize streams before processing.  

Initially deployed on a single server, currently Cam-
Server runs on a Linux cluster of 13 servers and can scale 
further. 

____________________________________________  
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Figure 1: Architecture. 

ARCHITECTURE 
The data flow and overall architecture of CamServer is 

presented in Fig. 1. In its simplest form it consists of two 
services, CameraServer and PipelineServer: 

1. CameraServer ensures there is one single connection 
to each camera to prevent overloading camera IOCs. 
It also converts different camera protocols, performs 
pre-processing, and makes camera data available.  

2. PipelineServer performs data processing, optionally 
aligning streams, and outputs the result to a stream. 

Both services share the same architecture, featuring a 
management process, a database and a REST API. The 
management process is responsible for initiating pro-
cessing units, referred to as instances, within separated 
processes for scalability and isolation. Instances are started 
either automatically, based on pre-defined configurations, 
or in response to client requests. The database contains 
camera and pipeline configurations (as JSON files), cus-
tom Python scripts, user libraries (packaged as .egg files), 
and data files (e.g., image background files). The API ena-
bles clients to control, monitor, and configure the system. 
Client libraries written in Python and Java encapsulate the 
access to the API. 

The services offer a web-based user interface for moni-
toring performance and visualizing running instances. Ad-
ditionally, there is a desktop management application 
called CamServer Manager [11], designed to streamline 
system configuration and monitoring. It simplifies the pro-
cess of uploading scripts, data files, and libraries. 

In the case of CameraServer, a camera instance encapsu-
lates the unique connection to a camera. It receives images 
from a specific source, converts them to a standard repre-
sentation, performs image correction operations such as 

rotating, mirroring or cropping, generate the calibrated X 
and Y axis, and forwards the image and its metadata in a 
stream. The output is a ZMQ pub-sub stream which can 
feed multiple processing units and can be also directly ac-
cessed by client software or propagated to the DataBuffer. 

In PipelineServer, the processing unit is called a pipe-
line. A pipeline instance receives a stream from Camer-
aServer or another source (e.g., the DataBuffer), executes 
a processing function on the input data and forwards the 
result in a stream. Optionally a pipeline can receive two 
streams, aligning them before processing. Pipelines can be 
cascaded, which means the output of one can be configured 
as the input of another. 

Clients can request the creation of new pipeline instances 
or access existing ones. They can dynamically modify 
pipeline parameters, including the processing function, 
background image, thresholding, and the region of interest.  

A pipeline instance is started by providing a unique name 
and either a configuration structure or the name of a saved 
configuration. Multiple clients can share the same pipeline 
instance, meaning they receive data from the same stream. 
CameraServer allows only one running instance of each 
image source, and hence only one connection to each cam-
era. In contrast, PipelineServer permits the creation of mul-
tiple pipeline instances based on the same configuration, 
each with a distinct name. 

Pipelines can be permanent or on-demand. Permanent 
pipelines run continuously and typically serve as sources 
for the DataBuffer or other pipelines. On-demand pipelines 
are started by a client and terminate as soon as there are no 
more connected clients, and after a configurable timeout.  
When a client requests a pipeline, it receives back the URL 
of the instance’s stream. Camera instances are created as 
needed when used by a pipeline. 
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Figure 2: Deployment. 

A pipeline executes a processing function on incoming 
data. This function receives, as parameters, the data dic-
tionary, the timestamp, the pulse identifier, and the config-
uration dictionary. It must return a dictionary containing 
the output data, which is then encoded into the output 
stream. A pipeline can also dump the output to hdf5 [12] 
files, but in SwissFEL there is no storage mounted in the 
processing servers, which operate exclusively on streams. 

CamServer supports different types of parallelization, 
which can be configured within the pipeline without requir-
ing changes to the processing function: 
 Multi-threading: beneficial for I/O bound pipelines, or 

else for CPU bound pipelines using Numba [13], 
which can benefit from execution in multiple threads. 

 Multi-processing: useful for CPU bound pipelines, but 
most performant when handling small data, such as 
low-resolution cameras, due to the necessity of serial-
izing input data to the processes through pipes. 

 Fan-out/fan-in: used for CPU bound pipelines pro-
cessing big data. A fan-out pipeline dispatches data 
over ZMQ to multiple worker pipelines, and a fan-in 
pipeline gathers, orders, and forwards the outputs. 

As an alternative for performance improvement, Cam-
Server also allows users to define a processing function as 
a Python C extension. This can be achieved by either up-
loading the compiled extension library or providing a C file 
that will be dynamically compiled into an extension. 

DEPLOYMENT 
Both PipelineServer and CameraServer can scale by di-

viding each service into a manager component, which 
serves as a proxy, and multiple worker components distrib-
uted across different server nodes. A cluster consists there-
fore of one server running the manager service and multi-
ple servers (nodes) running the worker service.  

In a clustered deployment, the API and client libraries 
remain identical as when running in single-server configu-
ration. The calls to the manager are propagated to the nodes 
and URL of instances in the nodes are returned to clients. 

The data flow of a clustered deployment is presented in 
Fig. 2. 

Each node runs both the PipelineWorker and the Client-
Worker services. In fact, two clusters are formed, one for 
CameraServer, and one for PipelineServer, using the same 
nodes. Setting up a cluster requires additional configura-
tion, including defining rules for assigning pipelines to spe-
cific nodes and ports. By assigning pipelines to nodes, it is 
possible to isolate traffic and processing. For example, 
servers allocated for a particular purpose or beamline will 
not affect other nodes. Typically, instances are allocated 
with random ports within a range, and clients access the 
REST API to obtain the stream URL based on the instance's 
name. Alternatively, users can configure a specific port for 
an instance, allowing clients to access the stream directly 
via a fixed URL. 

When creating a new instance, the manager selects a 
worker node based on the configuration. If no rule exists 
for that pipeline, a node is selected between the generic 
servers - the ones not assigned to a specific set of pipelines 
and cameras. In principle, the server with the lower load is 
selected, but it is preferred to run pipelines and their corre-
sponding camera instances on the same node to minimize 
unnecessary traffic between nodes. 

For many years CamServer services have run within a 
Docker [14] container. A single Docker image was used for 
all the services. More recently this has changed. Deploy-
ment now is done using an Ansible [15] script that creates 
an individual Python environment in each node. This 
change was done to allow beamlines to install specific 
packages in their allocated servers if needed, and to sim-
plify and accelerate the development cycle. 

FIGURES AT SWISSFEL 
Currently the SwissFEL CamServer cluster is composed 

by 13 servers, each equipped with Intel(R) Xeon(R) Gold 
6342 @ 2.80 GHz, featuring 48 cores, 96 threads, and 
25 Gb network adapters. Of the 13 servers, 4 are generic, 
5 are beamline specific, 3 are used for mission critical pipe-
lines and one for testing.  
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At 100 Hz each server is limited by network bandwidth 
to 2 high-resolution cameras (2560x2160), but it can sup-
port numerous low-resolution cameras.  

The cluster continuously receives and transmits data at a 
rate of approximately 5 GB/s. It is currently configured 
with nearly 500 processing pipelines and 200 cameras.   

More than 50 permanent pipelines run continuously, 
sending data to the DataBuffer. On average more than 
10 on-demand pipelines run at a time and are mostly cre-
ated via ScreenPanel, the standard camera viewer applica-
tion for SwissFEL. ScreenPanel is a CamServer client and 
is based on PShell [16], a data acquisition and display soft-
ware equipped with tools to facilitate access to CamServer 
and streams in general. 

FUTURE PLANS 
There are plans to utilize CamServer in SLS 2.0 [17] for 

beam monitoring, emittance measurement and bunch 
length measurement. Currently, a simple single-server 
setup has been deployed to initiate these developments.  

CamServer is also being considered for handling detec-
tor data, potentially to provide online feedback for experi-
ments. A first prototype has been implemented in Swiss-
FEL. This requires a working node inside the beamline net-
work, for the processing to be close to the detector. It can 
be done with a dedicated CamServer deployment, or else 
controlled by the centralized manager.  

One upcoming planned feature may be particularly ad-
vantageous for detector data processing and broader appli-
cations within SLS and SwissFEL beamlines: CamServer's 
capacity to initiate and oversee execution of external pro-
cesses. A specific type of pipeline would be introduced to 
configure this scenario. 

External processes could be developed in any language 
and would be loosely coupled to CamServer, optionally ex-
changing data over ZMQ. When starting such processes 
CamServer would provide connecting points by command 
line arguments or environment variables. They would be 
URLs for the process to receive data, send logs, receive 
configuration changes, and send the output stream. The aim 
is to give users the freedom to implement the processing 
pipelines in the way and language they prefer while lever-
aging CamServer's tools for efficient management, config-
uration, and real-time monitoring of pipeline execution. 

LESSONS LEARNED 
The following observations can be useful for similar pro-

jects: 
 The Python platform inherently presents difficulties 

for packaging and deployment. Projects must define a 
strategy for handling them in the long time.  

 A dockerized deployment is elegant and consistent 
but, for the scale of our cluster, it was preferable to 
abandon it to simplify our development cycle and ben-
efit from the flexibility of customizable environments.  

 Python threading is inefficient for CPU bound tasks 
due to the Global Interpreter Lock (GIL). Strategies to 
overcome this problem is a necessity in systems that 

perform heavy processing, for example by implement-
ing true parallelism in C or by multiprocessing. 

 NumPy can benefit from external linear algebra librar-
ies. Counterintuitively OpenBLAS [18] outperformed 
MKL [19] in our Intel servers, when deployment was 
dockerized, as MKL had been compiled on a different 
CPU. Sometimes performance was degraded follow-
ing an image upgrade, as either library could be used 
depending on the Miniconda [20] base image. A base 
docker image fixing basic libraries was then used to 
prevent it. 

 Initially all cores of our servers would run at 100% 
when handling compressed data. That’s because the 
Bitshuffle [21] library was not being bound to the 
proper number of cores. Bitshuffle had to be recom-
piled, setting the OpenMP [22] number of threads to 
one. 

 Up to Python 3.6 there was an issue in NumPy, or one 
of its libraries, when copying images bigger than the 
huge page size, rocketing CPU usage to 100%. Like 
the issue with Bitshuffle, this was only seen in the 
servers and not on regular computers. The problem 
happened internally in NumPy when copying read-
only images received by other processes before in-
place operations. Big images had to be copied by 
chunks before being sent to NumPy to avoid that. This 
was solved later in Python 3.8 library stack. 

 It is not possible to configure ZMQ, in push-pull pat-
tern, to discard old messages instead of the newest 
ones when the queue is full. When ZMQ transmission 
breaks, old messages remain in ZMQ buffer. When 
communication resumes old messages are send before 
fresh new ones are. If this behavior is not acceptable 
the application must set ZMQ buffer size to one and 
handle the buffering itself. 

 CamServer always used the latest versions of PyZMQ. 
Bugs very difficult to track emerged when having 
massive communication with Java clients using older 
version of JeroMQ - such as in the DataBuffer. It is 
advised to use latest ZMQ libraries on all languages. 

 Finally, projects with uncertain scope must prepare for 
changes and scaling from beginning in order to suc-
ceed. 

CONCLUSION 
Over the past years CamServer established as one of the 

core components for controls and data-acquisition at 
SwissFEL. The system can scale as new cameras and pipe-
lines are continuously being added and new use cases are 
being implemented. It is likely to become the tool for beam 
monitoring and measurement at SLS 2.0. It is also an op-
tion to provide, in beamlines, online feedback for detector 
data during experiments. 
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