
INTEGRATION OF BESPOKE DAQ SOFTWARE WITH TANGO
CONTROLS IN THE SKAO SOFTWARE FRAMEWORK

— FROM PROBLEMS TO PROGRESS
A. J. Clemens∗, Observatory Sciences Ltd., Cambridge, United Kingdom

D. Devereux† , CSIRO, Australia
A. Magro‡ , Institute of Space Sciences and Astronomy University of Malta, Malta

Abstract
The Square Kilometre Array Observatory (SKAO) project

is an international effort to build two radio interferometers
in South Africa and Australia to form one Observatory mon-
itored and controlled from the global headquarters in the
United Kingdom at Jodrell Bank. The Monitoring, Control
and Calibration System (MCCS) is the “front-end” man-
agement software for the Low telescope which provides
monitoring and control capabilities as well as implement-
ing calibration processes and providing complex diagnostics
support.

Once completed the Low telescope will boast over
130,000 individual log-periodic antennas and so the scale of
the data generated will be huge. It is estimated that an aver-
age of 8 terabits per second of data will be transferred from
the SKAO telescopes in both countries to Central Processing
Facilities (CPFs) located at the telescope sites.

In order to keep pace with this magnitude of data produc-
tion an equally impressive data acquisition (DAQ) system
is required. This paper outlines the challenges encountered
and solutions adopted whilst incorporating a bespoke DAQ
library within the SKAO’s Kubernetes-Tango ecosystem in
the MCCS subsystem in order to allow high speed data cap-
ture whilst maintaining a consistent deployment experience.

INTRODUCTION
The Square Kilometre Array Observatory (SKAO) repre-

sents a significant advancement in our pursuit of understand-
ing the universe through radio astronomy. This scientific
endeavor requires a complex toolchain in which each com-
ponent plays a crucial role. At the core of this toolchain lies
Docker [1], a well-known technology for containerization,
which serves as a key element for packaging and deploy-
ing various components of the SKAO project. Additionally,
Minikube [2] and Kubernetes [3] take on important roles,
managing local development environments and ensuring ro-
bust production-level deployments to support the scalability
and resilience necessary for a project of this scale. Helm [4],
with its templating capabilities, simplifies the deployment
process, while Make acts as a unifying force to streamline the
intricate interactions between these components, ensuring
an efficient deployment workflow.

∗ ajc@observatorysciences.co.uk
† drew.devereux@csiro.au
‡ alessio.magro@um.edu.mt

Amidst this technological tapestry a significant challenge
emerged: the seamless integration of third-party software,
including xGPU [5] and NVIDIA’s CUDA [6] (Compute
Unified Device Architecture) along with their dependencies
into the framework of Tango Controls [7]. Tango Controls,
the chosen control framework for the SKAO project, forms
the backbone upon which our astronomical endeavors rely.

This paper documents the journey undertaken to bridge
the gap between the SKAO deployment toolchain and third-
party data acquisition (DAQ) software [8]. Its purpose is to
provide a comprehensive account of the strategies employed,
the complexities encountered, and the solutions devised dur-
ing this process. The goal is to offer valuable insights, not
just as a record of achievements but as a resource for engi-
neers and scientists facing similar integration challenges.

We will explore two distinct phases: the first phase “The
Quest for Data” delves into the incorporation of third party
software into the SKAO’s data acquisition system. The sub-
sequent phase “The Correlator Saga” explores the challenges
and solutions encountered in the integration of these critical
components.

THE QUEST FOR DATA
In our pursuit of data acquisition the first milestone was

the creation of a containerized Tango device server to drive
the DAQ (data acquisition) software. This step laid the foun-
dation for our data acquisition endeavors within the project.
As we embarked on this quest we encountered a series of
formidable challenges, each demanding resourcefulness and
persistence to surmount.

Inheriting Capabilities
The initial challenge arose from the limitations of config-

uring capabilities solely within the Dockerfile. While the
container itself possessed the necessary capabilities, a cru-
cial nuance emerged: the Kubernetes pods failed to inherit
these essential capabilities.

To address this challenge we informed Helm about the
specific capabilities required by appending them to the
securityContext::capabilities::add field within
the values file. This ensured that Kubernetes pods inher-
ited the critical capabilities, aligning both the container and
pod with the requisite permissions.

Selective Capability Application
Expanding upon the prior solution, the challenge of se-

lective capability application came to the forefront. Despite

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP079

Software

Software Architecture & Technology Evolution

THPDP079

1533

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



the initial solution’s effectiveness in ensuring proper per-
missions for the device server, it unintentionally introduced
unnecessary capabilities to all other device servers within
the team’s ecosystem.

In response, we opted for a more targeted approach. To
selectively apply capabilities only where necessary we es-
tablished a dedicated DAQ repository complete with its own
OCI (Open Container Initiative) image. This strategic isola-
tion allowed us to maintain precise control over capability
assignment, mitigating the undesired side effects.

Data Reception
As we ventured further into the quest for data, a perplexing

issue surfaced. Despite specifying EXPOSE <port>/udp in
the Dockerfile our device server was not receiving data as
anticipated. An important, yet surprising, revelation was that
the EXPOSE command in Dockerfiles held no direct influence
on network functionality.

In response to this challenge, refinements were made to
our Helm templates. These templates were adjusted to in-
corporate enhancements that would generate a load balancer
service for each receiver in order to expose an external IP ad-
dress to which data could be routed. This adjustment ensured
that each service efficiently routed traffic to the appropriate
port of its respective receiver’s pod, thereby allowing data
ingress.

Network Interface Access
Persisting on our journey, we encountered an enduring

challenge - reliable data reception from external sources
within the cluster remained elusive. This was because be-
cause Minikube, our local development Kubernetes cluster,
lacks the capability to grant raw network interface access,
resulting in complete packet loss at the cluster boundary.

Figure 1: First Evolution of DAQ Architecture.

In reaction to this challenge we initiated a transformation
of the DAQ device’s architecture (Fig. 1). The device was
partitioned into two distinct components: a frontend Tango
device server and a backend DAQ server. These components
communicated via gRPC [9] facilitated by a Kubernetes
service. This strategic division afforded us the flexibility to
deploy the frontend Tango device server within the cluster
using familiar SKAO tools. Simultaneously, the backend
DAQ server could be manually deployed externally to the
cluster using Docker. This external deployment allowed us
to grant the requisite access to raw network interfaces thus
resolving the packet loss issue at the cluster boundary.

Transition to Hardware Sites
Our path toward data acquisition reached an important

crossroads as we transitioned from successful data capture
in Minikube using simulated data to hardware sites with
a complete Kubernetes setup. Old challenges resurfaced,
primarily concerning gaining access to the host’s network
interfaces.

To address this we embarked on the incorporation of a
Container Network Interface (CNI) meta-plugin known as
MULTUS into our setup. MULTUS was an important piece
in our solution by enabling the simultaneous loading of our
primary CNI, Calico, and subsequently granting a pod access
to an additional network interface by moving it into the pod’s
network namespace. This strategic integration empowered
our data capture efforts at hardware sites, demonstrating our
adaptability and resolve.

In our pursuit of data acquisition, each challenge be-
came an opportunity for innovation. These hurdles, though
formidable, were navigated with determination and resource-
fulness. Our commitment to overcoming these obstacles
reflects our dedication to advancing radio astronomy, one
step at a time.

THE CORRELATOR SAGA
As we progressed further into our integration journey,

a new chapter unfolded - the compilation and integration
of the correlator, a critical component in the SKAO’s data
processing arsenal. This chapter, marked by its own set
of challenges and innovative solutions, showcases our un-
wavering commitment to building a robust and adaptable
system.

Compatibility Complexities
Creating an OCI image compatible with the SKAO

toolchain, Tango Controls and CUDA, along with their
intricate dependencies proved to be a formidable puzzle.
Complex compatibility matrices and version disparities hin-
dered development, leaving us searching for an alternative
approach.

In light of this problem, we embarked on a strategic pivot
to decouple the Tango Controls and CUDA requirements
(Fig. 2). The first step involved relocating the frontend Tango
device server from the DAQ repository, effectively remov-
ing the Tango dependency. This architectural shift allowed
us to employ an official NVIDIA base image, pre-loaded
with CUDA and its essential dependencies. Simultaneously,
we separated the communication protocol between the DAQ
frontend and backend into its own dedicated repository. This
deliberate separation ensured protocol flexibility, preserv-
ing adaptability in case of a transition from gRPC to other
communication methods. This streamlined deployment ap-
proach paved the way for uniform deployment of both DAQ
halves, each originating from their respective repositories
and eliminating the requirement of deploying the backend
externally to the cluster with Docker.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP079

THPDP079

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1534

Software

Software Architecture & Technology Evolution



Figure 2: Final Evolution of DAQ Architecture.

Unlocking GPU Resources
Upon deployment, the DAQ server backend encoun-

tered initial difficulties in establishing communication with
the available GPU resources on the host. This challenge
stemmed from intricacies in deployment configuration and
the overall cluster configuration.

To surmount this challenge, a multi-faceted solution
emerged. The first critical requirement was to ensure that
a GPU was not only available on the host machine but
also registered with the cluster as an allocatable resource.
This registration enabled the GPU to be requested by a pod
under Helm’s resources::limits::nvidia.com/gpus
key. Furthermore, the host machine needed to have the cor-
rect GPU driver installed, as well as the NVIDIA Container
Toolkit which provides a specialised container runtime. To
ensure that the Docker daemon was able to provide GPU
hardware access to applications running in containers we
utilized the NVIDIA Container Runtime and specifying it
in the Helm template’s runtimeClassName field. This en-
sured that the DAQ server backend could harness the power
of available GPU resources, unlocking the potential of the
correlator.

In the unfolding saga of the correlator integration, each
challenge met and overcome reinforces our commitment to
building a resilient and adaptable system. These solutions
reflect our dedication to precision and innovation as we push
the boundaries of technology in the pursuit of groundbreak-
ing radio astronomy research.

CONCLUSION
The journey we embarked upon, as recounted in this paper,

is not merely a documentation of technical challenges and
their solutions but a testament to the resilience, innovation
and unwavering dedication of the teams behind the SKAO
project. In our quest to integrate third-party DAQ software
into the Monitoring, Control, and Calibration System, we
encountered formidable hurdles, each requiring a unique
approach and a steadfast commitment to success.

The integration of third-party software and its dependen-
cies demanded ingenuity and adaptability. Challenges, such

as configuring capabilities and managing compatibility be-
tween Tango Controls and CUDA prompted us to devise
innovative solutions. These solutions, from refining Helm
templates to streamlining deployment pipelines and separat-
ing communication protocols, not only addressed immediate
obstacles but also laid the foundation for a more robust and
adaptable system.

As we delved deeper into data acquisition and the complex-
ities of GPU integration within the correlator, our resolve
remained unshaken. We adapted to new realities, ensuring
that the system would be well equipped to process and an-
alyze the vast volumes of data it will soon encounter. Our
journey was marked by the pursuit of excellence and the
relentless pursuit of solutions that align with the goals of
this groundbreaking project.

While this paper illuminates the path we traversed, it it
important to recognize that our work is part of a much larger
tapestry of scientific discovery. The SKAO project repre-
sents a testament to human curiosity and ambition as we
endeavor to unlock the mysteries of the universe. Our con-
tributions, though significant, are but a single thread in this
grand narrative, and we stand alongside countless others
who share our passion for exploration.

In conclusion, the challenges we faced and the solutions
we crafted are a reflection of our commitment to advancing
radio astronomy and technology integration. They exemplify
the spirit of collaboration and innovation that drives projects
of this magnitude. The SKAO is poised to make ground-
breaking discoveries, and we are proud to have played a role
in laying the technical groundwork for its success. As we
look to the stars, we are reminded that the pursuit of knowl-
edge knows no bounds and the SKAO stands as a testament
to the power of human ingenuity and the enduring quest for
understanding.

REFERENCES
[1] Docker, https://www.docker.com

[2] Minikube, https://minikube.sigs.k8s.io

[3] Kubernetes, https://kubernetes.io

[4] Helm, https://helm.sh

[5] M. A. Clark, P. C. La Plante, and L. J. Greenhill, “Accelerating
Radio Astronomy Cross-Correlation with Graphics Process-
ing Units”, in Int. J. High Perform. Comput., vol.27, 2013,
pp. 178–192. doi:10.1177/10943420124447

[6] CUDA, https://developer.nvidia.com/cuda-zone

[7] Tango Controls, https://www.tango-controls.org

[8] A. Magro, K. Bugeja, R. Chiello, and A. DeMarco, “A High-
Performance, Flexible Data Acquisition Library for Radio In-
struments”, in 2019 IEEE-APS Top. Conf. Antennas Propag.
Wirel. Commun. (APWC), Granada, Spain, 2019, pp. 069-074.
doi:10.1109/APWC.2019.8870490

[9] gRPC, https://grpc.io

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP079

Software

Software Architecture & Technology Evolution

THPDP079

1535

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


