
TANGO INTEGRATION OF THE SKA-LOW POWER AND SIGNAL
DISTRIBUTION SYSTEM

E. L. Arandjelovic1∗, U. K. Pedersen1† , Observatory Sciences Ltd., U.K.
J. Engelbrecht1‡ , Vivo Technical, Cape Town, South Africa

D. Devereux1§, CSIRO, Australia
1also at SKA Observatory, Jodrell Bank, United Kingdom

Abstract
The Square Kilometre Array Observatory (SKAO)

is the world’s largest radio telescope, currently being
constructed on two sites: SKA-Low in Western Australia,
and SKA-Mid in South Africa. The Power and Signal
Distribution System (PaSD) is a key component of the
SKA-Low telescope, responsible for control and monitoring
of the electronic components of the RF signal chain for the
antennas, and collecting the RF signals for transmission to
the Central Processing Facility. This paper will describe
how the PaSD is being integrated into the Tango-based
SKA-Low Monitoring Control and Calibration Subsystem
(MCCS) software, including the facility for a drop-in Python
simulator which can be used to test the software.

Keywords: Tango, SKAO, Modbus, Telescope, Python.

INTRODUCTION
SKAO represents the next generation of radio astronomy,

poised to transform our understanding of the universe. Span-
ning two continents, Australia and South Africa, this very
large international initiative boasts two cutting-edge radio
telescopes. SKAO’s ambitions are wide-ranging and in-
clude exploring cosmic dawn: the formation of the first stars,
galaxies and black holes, investigating dark energy and the
acceleration of the expansion of the universe.

SKA-LOW
The SKA-Low is a radio telescope featuring over 130,000

log-periodic antennas, operating in the frequency range
of 50 MHz to 350 MHz, with a total collecting area of
419, 000 m². Situated in the desert of Western Australia, the
antennas are grouped into 512 Field Stations, distributed in
three spiral arms radiating from a central core, allowing a
maximum station-to-station distance of 65 km. SKA-Low’s
unique design employs wire-type antennas and advanced
back-end technology for efficiency at low frequencies. It
operates as a mathematical telescope, processing data, apply-
ing time-delays to align the phases of signals received from
a certain direction, to form virtual beams that ”point” the
telescope in different directions without moving parts. The
signals within the beam can then be searched for transient
phenomena and timed.
∗ ela@observatorysciences.co.uk
† ukp@observatorysciences.co.uk
‡ jarrett@vivosa.co.za
§ drew.devereux@csiro.au

Each Field Station of the SKA-Low telescope consists of a
256 antenna-element array to capture and amplify the signal
from the sky. The Power and Signal Distribution System
(PaSD), designed by Curtin Institute of Radio Astronomy
(CIRA) takes care of powering the antennas, collecting the
RF signals, and providing local monitoring and control [1].

PaSD ARCHITECTURE OVERVIEW
The PaSD system comprises ‘SMART boxes’ (SMART:

Small Modular Aggregation and RFoF Trunk) which each
connect directly to around 10 antennas to provide local mon-
itoring and control, and one Field Node Distribution Hub
(FNDH) per Field Station which distributes power to all
the SMART boxes and provides an Ethernet-serial commu-
nications gateway, as well as additional local monitoring.
Micro-controllers inside the SMART boxes and FNDH pro-
tect the equipment from damage by automatically turning
off ports in response to current and temperature readings,
thus separating the equipment protection concerns from any
external control system.

All of the PaSD parameters that can be monitored or con-
trolled are accessible via Modbus [2] registers in the FNDH
and SMART boxes. A register map is published by the PaSD
firmware manufacturers which describes the purpose and
function of each register. These include read-only registers
e.g. the Power Supply Unit (PSU) temperatures and output
voltages, and read-write registers e.g. current trip thresholds.
The first register of the FNDH and SMART boxes holds
the corresponding register map revision number, which is
incremented whenever this map has changed following a
firmware update.

All communication to the SMART boxes is funnelled
through the FNDH on a multi-drop serial bus using the
Modbus ASCII protocol. A Field Node Communications
Controller (FNCC) board in the FNDH handles the incoming
Modbus packets, passes them on to the SMART boxes which
each have a unique Modbus address, and routes responses
back. The PaSD architecture is detailed in Fig. 1.

MONITOR, CONTROL AND
CALIBRATION SYSTEM

The Monitor, Control and Calibration System (MCCS)
is responsible for the monitoring and control of all the lo-
cal hardware on the SKA-Low Field Stations. It monitors
and aggregates hardware status, making this available to the
Telescope Manager (TM) which provides the observation
management interface for operators and scientists [3]. It also

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP077

THPDP077

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1526

Software

Software Architecture & Technology Evolution



Figure 1: PaSD System Architecture.

includes the software to control and calibrate the Data Ac-
quisition System. Based on the Tango Controls framework
[4] and deployed as a containerized application, the MCCS
is a complex product being developed by a distributed ag-
ile team. The following sections describe how the PaSD
sub-component is being integrated into the existing MCCS
architecture.

SOFTWARE DESIGN
The nature of the shared serial bus means that each

SMART box must be polled in turn, to avoid collisions.
This is achieved through a software design that makes use of
a single client (Tango device) which communicates directly
to the PaSD, named the MccsPasdBus. All communication
is sent through this client, and a separate Tango device cor-
responding to each physical device (one per SMART box
and an additional one for the FNDH) then proxies through
MccsPasdBus and exposes the relevant attributes and com-
mands for that device to the end user, maintaining a direct
correspondence between hardware and Tango devices. An
additional Tango device representing an entire Field Station
also provides commands which will cascade down to its
FNDH and SMART box devices.

The low level transport code in the MccsPasdBus device
has been implemented using the PyModbus library [5]. This
was chosen for a number of key reasons: it has a lightweight
implementation with minimal dependencies (pyserial [6]
being the only third-party dependency), it ships with a thor-
ough test suite and example code, and supports the ability
to add customizations. PyModbus exposes an API for all of
the standard Modbus commands, including the ones needed
for this application, namely: read holding registers (Modbus
function code 03), write single register (function code 06)
and write multiple registers (function code 16).

The Tango device code has been separated from the low-
level Modbus communication through the creation of a PaSD
Modbus API. This comprises two parts: a client side which

has public methods used by MccsPasdBus to read and write
attributes and execute commands, and a server side which
provides a Modbus interface to a simulator used for testing
purposes, as shown in Fig. 2.

Polling Model
A PasdBusRequestProvider class is used to determine

what Modbus commands are sent to the hardware, and in
what order. This keep tracks of what commands or regis-
ter writes have been requested by the user (e.g. to turn a
SMART box port on or off, or reset an alarm register), and
also maintains a list of registers which need to be regularly
polled so that the Tango device attributes can be updated to
reflect the real state of the hardware. On each poll iteration,
the request provider checks if a register write has been re-
quested and needs to be forwarded down to the Modbus API
client. In the absence of any command, it iterates through
the FNDH and SMART box devices, requesting the next
block of contiguous registers to be read.

SIMULATION AND TESTING
There are functional, integration and unit tests for all

the components of the PaSD software implemented with
pytest. The tests are run as part of the CI/CD pipelines on
SKAO’s Gitlab [7]. This infrastructure does not have access
to the PaSD hardware, therefore the tests are run against a
pure python PasdBusSimulator which communicates with
the MccsPasdBus via a Modbus server. A Field Station is
simulated consisting of a single FNDH simulator and up to
24 separate SMART box simulators.

The simulator functionality includes:

• Loading the port configuration (which FNDH port each
SMART box is connected to, and which SMART box
port each numbered antenna is connected to) from a
YAML file.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP077

Software

Software Architecture & Technology Evolution

THPDP077

1527

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



SKA-Low MCCS PaSD

PaSD simulator

FNDH Electronics Package

MccsSmartBox 24
Tango device

MccsPasdBus

+ InitializeFndh()
+ InitializeSmartbox()
...

MccsSmartBox 1
Tango device

+ InputVoltage
+ PortsCurrentDraw
...

+ PowerOnPort()
+ PowerOffPort()

MccsFNDH
Tango device

+ Psu48vVoltages
...

+ Configure()
+ PortPowerState()
...

Modbus client API

Modbus ASCII over TCP/IP :0103000000008EA\r\n

Bus simulator with
Modbus server API

FNDH simulator
SMART box
simulators

Communications Gateway

Figure 2: Monitoring, Calibration and Control System of
Field Station PaSD subsystem (hardware or simulator).

• The coupling of SMART boxes to the power state of the
FNDH port to which they are connected. In other words,
if an FNDH port is turned off, the attached SMART
box becomes unresponsive from MCCS’s perspective.

• The ability to read/write all registers to be accessed
during normal operation

• System status initialization, status transitions and their
effects, e.g. forcing ports off after an alarm condition.

• Reporting the alarm and warning state of sensors, and
setting their thresholds.

• SMART box port over-current breaker tripping and
resetting.

• The ability for field technicians to override the devices’
states for maintenance.

Limitations
All simulated attributes such as voltages, currents and

temperatures are static and are not changed or randomized,
as this would complicate unit testing. Fault conditions are
only forced with function calls to the simulator within tests
to check the behaviour of the system.

CONCLUSION
The PaSD instrumentation has been integrated into the

Tango Control system through MCCS using the PyModbus
module. Furthermore, a simulation of the PaSD Modbus
interface has been created to enable further software devel-
opment and CI testing without access to the actual hardware.

The solution has been tested at the SKA-Low Integration
Test Facility (ITF) with a single FNDH and two SMART
boxes available to developers. Initial testing on a larger scale
system – the first full Field Station (AAVS3) – is currently
underway.

ACKNOWLEDGEMENTS
This work fits into a very large project and, as such has

been carried out in a collaborative fashion between individ-
uals and teams working for or collaborating with the SKAO
project. Acknowledgements go out to:

• The SKAO MCCS Team for patiently supporting us to
bring up the complex development environment.

• C. McDonald at LOW ITF for enabling and supporting
our access to the PaSD hardware.

• A. Williams at Curtin University, Perth, Australia
whose in-depth explanations from his work with both
simulating and implementing the client-side python
utility for the PaSD was instrumental to get this inte-
gration work off the ground.

• M. Safta at Curtin University, Perth, Australia – credits
for Fig. 1.

REFERENCES
[1] M. G. Labate et al., “Highlights of the Square Kilometre Array

Low Frequency (SKA-LOW) Telescope”, J. Astron. Telesc.
Instrum. Syst., vol. 8, no. 1, p. 011 024, 2022.
doi:10.1117/1.JATIS.8.1.011024

[2] M. I. I. A. Systems, “Modicon modbus protocol reference
guide”, Rep. PI–MBUS–300, 1996. https://www.modbus.
org/docs/PI_MBUS_300.pdf

[3] Y. Gupta, V. Mohile, J. Kodilkar, R. Uprade, Y. Wadadekar,
and S. R. Chaudhuri, “Telescope Manager for the SKA”, J.
Astrophys. Astron., vol. 44, no. 1, 2023.
doi:10.1007/s12036-023-09908-0

[4] Tango Controls, https://tango-controls.
readthedocs.io/en/latest/overview/overview.
html

[5] PyModbus, https://pymodbus.readthedocs.io
[6] pySerial, https://pyserial.readthedocs.io
[7] M. D. Carlo, M. Dolci, P. Harding, J. Morgado, B. Ribeiro, and

U. Yilmaz, “CI-CD Practices at SKA”, in Proc. ICALEPCS’21,
Shanghai, China, 2022, paper TUBL04, pp. 322–329.
doi:10.18429/JACoW-ICALEPCS2021-TUBL04

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP077

THPDP077

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1528

Software

Software Architecture & Technology Evolution


