
BUILDING, DEPLOYING AND PROVISIONING
EMBEDDED OPERATING SYSTEMS AT PSI

D. Anicic, Paul Scherrer Institut, Villigen, Switzerland

Abstract
In the scope of the Swiss Light Source (SLS) upgrade

project, SLS 2.0, at Paul Scherrer Institute (PSI) two New
Processing Platforms (NPP), both running RT Linux, have
been added to the portfolio of existing VxWorks and Linux
VME systems. At the lower end we have picked a variety
of boards, all based on the Xilinx Zynq UltraScale+
MPSoC. Even though these devices have less processing
power, due to the built-in FPGA and Real-time CPU (RPU)
they can deliver strict, hard RT performance. For high-
throughput, soft-RT applications we went for Intel Xeon
based single-board PCs in the CPCI-S form factor. All plat-
forms are operated as diskless systems. For the Zynq sys-
tems we have decided on building in-house a Yocto Kirk-
stone Linux distribution, whereas for the Xeon PCs we em-
ploy off-the-shelf Debian 10 Buster. In addition to these
new NPP systems, in the scope of our new EtherCAT-based
Motion project, we have decided to use small x86_64 serv-
ers, which will run the same Debian distribution as NPP. In
this contribution we present the selected Operating Sys-
tems (OS) and discuss how we build, deploy and provision
them to the diskless clients.

INTRODUCTION
At PSI we operate four accelerator facilities: HIPA and

PROSCAN proton facilities, and SLS and SwissFEL elec-
tron facilities. They age from few years up to several dec-
ades. A variety of hardware, computers, operating and con-
trol systems have been used during this time.

Hardware-wise mostly VME based systems are used, but
also quite a lot of PC based systems and a variety of com-
mercial small computer boxes. We also use many virtual-
ized systems.

On the software side we have VxWorks, Windows, Sci-
entific Linux, Red Hat Enterprise Linux, and a diversity of
Embedded Linux Systems, all in several versions.

Some OS-s have been installed on local hard disk, some
others are network-booted. Experience shows that net-
work-based provisioning is simpler for updates and
changes.

NEW PLATFORMS
Three new platforms are supported:
 Zynq Ultrascale+ based computers
 x86_64 single board computers (SBC) in CPCI-S
 Small x86_64 servers

Zynq Ultrascale+ Based Computers
The decision to use Zynq Ultrascale+ platform was taken

already some time ago. Several tests were performed, and
three types were envisioned, for small, medium and high

performance and/or power consumption. But because sev-
eral internal groups have been involved in the development
it actually resulted in almost ten different configurations.
Some groups decided to go forward with ready available
development boards bought directly from manufacturers,
whilst others took either a Silicon-on-Chip (SoC) or Sili-
con-on-Module (SoM) approach, to develop their own
boards. Unlike we initially assumed, this variety actually
turned out not to be a problem.

x86_64 SBC
For some Zynq Ultrascale+ systems the CPCI-S bus was

targeted as our crate and bus standard, providing the possi-
bility, where needed, to create more powerful, x86_64
based systems, as CPCI-S bus controller and also as num-
ber cruncher, if needed. Presently we have only one board
type with Intel Xeon CPU, dual Ethernet connection, and
16GB of RAM.

Small x86_64 Servers
For the Motion project (motors) based on EtherCAT, our

initial design involved installing operating system locally.
With the operating system for x86_64 NPP already in
place, the decision was taken to re-use it also for the small
servers. This increases the synergies between our groups,
saves manpower and, will simplify maintenance. Although
any kind of PC could be used, our great wish was that eve-
rybody would use the same small HP DL20 servers. This
would simplify troubleshooting in case of problems and
provide for common replacement stock.

CHOOSING AND BUILDING
OPERATING SYSTEMS

Generally, we will use Linux for all our future projects.
Our wish was also to use a RealTime (RT) patched Linux
kernel.

Zynq Ultrascale+ Based Computers
For the initial considerations we have been using Xilinx

PetaLinux SDK. This was quite convenient as a proof of
concepts, but it turned out to be too complex to handle, be-
cause our different board development groups have
adopted different versions. The development also took
longer than planned, new hardware revisions have been
coming, and the need for newer versions of SDK were oc-
curring. It was not possible to easily satisfy all develop-
ment needs by supporting several versions.

The RT kernel patch was also not available for all kernels
provided by PetaLinux SDK.

For a functioning kernel, the Linux kernel device-tree,
which describes hardware-to-kernel interface, must be pro-
vided for each board type. Unfortunately the device-tree

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP070

Software

Software Architecture & Technology Evolution

THPDP070

1505

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

interfaces have been extremely incompatible between ker-
nel versions, and there was a need to standardize in that
respect, too.

Therefore we took the decision to proceed with a single
development environment, and single kernel for all our
board types.

For our Linux distribution, we took Yocto project in ver-
sion 4.0 Kirkstone.

For the kernel, we have taken one of the latest kernels
supported by PetaLinux, for which there is also the RT
patch available. We do not use the vanilla kernel, but the
Xilinx patched kernel, with all the necessary Xilinx drivers
included. Currently, we are using kernel 5.15.19-rt29 (RT
patch 29).

Although building Yocto projects provides a way to add
one’s own custom ‘recipes’ for adding or modifying pack-
ages, we have not taken that approach. We have simply
configured the build system to build base Linux system,
RootFS, with all packages we could need. We also build
the cross-compiler toolset for offline usage. The idea is not
to have to re-build Yocto project again. Then we install it
for network boot (read further in BOOTING).

Next, we build the RT patched Linux kernel offline (out
of Yocto build), and simply add it to the RootFS.

Besides RootFS and kernel, we also need device-tree for
each board type. Those are provided by board developers.
We add some common configurations, build the device-
tree binaries, and add them to the RootFS.

To start booting, the standard method with u-boot,
packed in Xilinx BOOT.BIN is used. U-boot also needs de-
vice-tree, so we have to collaborate with the board devel-
opers in this field, too. At PSI we are still aligning our ideas
with all the involved groups, in order to define a common
environment to provision the device-trees and build u-boot
and BOOT.BIN for all used board types.

We are using SysVinit to bring Linux up, so we also add
a few startup scripts for mounting the EPICS controls sys-
tem and related NFS shares, and a mechanism which ena-
bles us to run user specified scripts, before starting the EP-
ICS control system.

We also compile a few more applications, either our own
or those for which packages are not available in Yocto, and
add them to the RootFS, too.

x86_64 SBC and Small Servers
The initial idea was to use the same operating system as

used for all other PSI controls workstations and servers, but
with the RT kernel enabled instead. That would have meant
RedHat Enterprise Linux, version 7 at that time. The main
reason for this approach was to let our IT Department take
care of OS installation and maintenance. However, this
idea ran into a couple of obstacles. Firstly, the IT preferred
kernel was not cost-free, and secondly was their insistence
on regularly applying all OS updates. Given the operational
environment of our machines neither of these constraints
were possible for us.

Additionally, this approach would have required local
disk installations, which was also not our preference.

Therefore, we have decided to go for network boot, and
to manage this environment with controls personnel.

Now we had to make two decisions, which provisioning
system to use, and which Linux distribution. Both would
have to be free to use.

After some limited investigation, we have chosen the
Warewulf, Cluster Management & Provisioning tool.

For our Linux distribution, after initially considering
RedHat or CentOS, across experimenting with Ubuntu, we
finally decided on using Debian.

Debian offers RT Linux patched kernel packages. And
the tests showed that we got the best RT performance with
it. Unfortunately, due to the long development time, the
pre-built kernel package, for our preferred version, was ob-
soleted by newer kernel versions. Since we also need to add
a few of our own kernel-version dependent drivers, we
have downloaded the kernel sources, saved them locally,
and we built the RT-patched kernel from the ‘frozen’
sources.

We have also been experimenting with Debian 11, and
the newer kernel, 5.10.178-rt86, but it shows greater laten-
cies and less determinism, so we presently stick to kernel
4.19.208-rt88. Although Debian version 11 became availa-
ble, we have decided to keep using Debian 10 Buster, at
least for the platforms we are currently using.

Warewulf is a tool and server for provisioning operating
systems. Although it claims to be a cluster management
software, it does not have to be a cluster at all, it can simply
be a bunch of independent systems.

Warewulf provides all necessary services and handles
their configuration and startup. We intended to use it with
all necessary services in a separate network, but now we
use only http service for loading (more about it in BOOT-
ING).

One of the other Warewulf’s features is node configura-
tion. However, we do not use this feature as we found, it is
much more convenient to text-edit configuration files and
simply re-start the http server to activate changes.

Currently, we only use the Warewulf’s container and ker-
nel import and image build features. More concretely,
Warewulf can import the Docker images, unpack them, and
build images suitable for http download, which is more or
less all we need.

Building Debian system is done out of Warewulf, in
Docker build, which we have integrated in our GitLab
CI/CD mechanism.

We have implemented a two-stage Docker build. In both
cases we start with Debian Buster.

In the first stage we additionally install essential kernel
build tools, then we RT patch and build the kernel from the
frozen sources. The Debian kernel build process automati-
cally creates all the needed installation packages.

Next, we do out-of-tree build of our extra kernel mod-
ules, and also package them for later installation.

In the second stage, we install all the packages required
for running on the client nodes, including, in the previous
stage, built kernel and modules packages. Presently our
Debian system consists of almost 400 directly selected or
dependent packages.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP070

THPDP070

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1506

Software

Software Architecture & Technology Evolution

Then we install and enable a few of our own additional
services, which we need for EPICS. This would include
mounting additional EPICS control system and related
NFS shares, and a mechanism which enables us to run user
specified scripts, before starting EPICS control system.

Warewulf has a feature of ‘overlaying’, implemented in
two stages: system and runtime overlay.

The system overlay is loaded latest at boot time, and
adds or overwrites existing files in the RootFS. This can be
used to modify defaults, typically in ‘/etc’ or the user home
directories.

The runtime overlay behaves functionally same as the
system overlay, but it gets re-loaded every minute. This
could be used, for example, to modify ‘user’, ‘group’, or
‘sudoers’ files. This gives possibility to change or add
things without a need to re-boot the client.

BOOTING
Zynq Ultrascale+ Based Computers

Our Zynq based systems load BOOT.BIN from the
SDCARD. The first stage boot loader, part of it, then starts
u-boot. By default, u-boot offers TFTP based network
transfer for loading, and we simply take advantage of it.
Since we already have clients using TFTP boot, and servers
configured for that, it was a clear way to go.

Since we have different board types, and boot the same
kernel and RootFS, we need a mechanism to differentiate
between them. To do this we have introduced a dedicated
u-boot environment variable, ‘boardid’, containing the
unique board type-name. Further on, for every client IP-
name, and used TFTP boot-server and nfs-server names
have to be defined, too. Some other environment variables,
are also required and are all passed to kernel, too.

The boot process first gets an IP address by DHCP, and
then gets, per TFTP, our u-boot script, which continues the
boot process. It downloads, also per TFTP, the Linux ker-
nel, and according to ‘boardid’ selects board dependant de-
vice-tree to download. It composes the kernel parameter
list and passes them to the kernel.

The Kernel then uses those parameters to mount the
RootFS over NFS, from specified nfs-server. Then kernel
starts Linux by running SysVinit ‘init’ process.

Linux also gets parameters (either through kernel’s
‘cmdline’, or by reading u-boot environment variables
from SDCARD directly). They are used to mount addi-
tional NFS shares, which are needed for running our EP-
ICS control system.

x86_64 SBC and Small Servers
In the PSI controls group we had not previously encoun-

tered the network boot process associated with the x86_64
(better known as PC) architecture. Of course, our IT sup-
ports it for Windows and Linux network installations. Ini-
tially we assumed that making Warewulf use the same
mechanism would not be a problem.

However, we were wrong. Warewulf booting would in-
volve a PC enabling PXE network boot and then using
DHCP, TFTP and HTTP for further steps. Initially we have

tried this method, with our IT Department’s assistance, and
it worked. However, they were not happy with it, because
it would have placed ‘a high burden’ on our network
VLAN and DHCP setup and would require IT Depart-
ment’s expert involvement to configure each new client.
Additionally, they were reluctant to delegate this task to us.
Subsequently, we have tried, again with IT assistance, to
create a private VLAN network for Warewulf booting pur-
poses only, fully under our control. This also worked, but
the approach was again rejected with the similar explana-
tion. Another drawback was that every client would have
also needed access to additional VLAN networks, for con-
trol system purposes. This would have potentially made
possible to avoid our IT VLAN routing restrictions.

At this point it seemed that we had reached a dead end,
but finally we managed to arrive at a very elegant solution.

By default, PXE would do DHCP and then by TFTP load
iPXE. iPXE would have then used DHCP again to obtain
the client boot configuration, and then load needed images
using HTTP protocol.

The new solution is to simply build iPXE ourselves, em-
bedding the configuration script in it (which contains re-
quired server address), and simply copy it to the USB stick.
We then configure the PC to use USB as boot device in-
stead of network PXE, and that’s it.

So, now iPXE gets loaded from USB stick, does some
necessary hardware initialization, and starts DHCP. It does
it on all network interfaces, until it gets an answer on one
of them. Then it uses that network interface to obtain the
client node configuration with HTTP, and loads accord-
ingly node specific images, also by using HTTP protocol.

Suddenly, another problem emerged. The HTTP is using
port 9873 instead of default port 80. It turned out that it was
blocked from some VLAN network. Fortunately, request-
ing and getting that port opened from our IT was not an
issue.

Now we got possibility to boot images from Warewulf
server, without the need for any further IT assistance.

Booting is then quite straightforward. After container
(RootFS), kernel, kernel modules and system overlays are
downloaded, iPXE unpacks them in RAM-disk, and starts
Linux. Linux then mounts additional NFS shares, in order
to run our EPICS control system. We use Warewulf pro-
vided feature of passing ‘ClusterName’ parameter to the
clients for choosing adequate NFS shares to mount.

FINAL CONSIDERATIONS
Currently, we have only about a dozen clients booting

from the Warewulf server. Many more clients are coming.
The images loaded are almost 700 MB in size, compressed.
This could be a burden on network in situations when many
clients try to boot at the same time, for example, after
power interruptions. We will deal with a problem if it
arises.

Also, the images are loaded into RAM-disk, the ex-
panded image size is almost 1.8 GB, which is quite a lot,
but should be no obstacle for systems with plenty of RAM.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP070

Software

Software Architecture & Technology Evolution

THPDP070

1507

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

