
IMPLEMENTING HIGH PERFORMANCE & HIGHLY RELIABLE TIME
SERIES ACQUISITION SOFTWARE FOR THE CERN-WIDE

 ACCELERATOR DATA LOGGING SERVICE
M.W. Sobieszek, J. Woźniak, R. Mucha, P. Sowiński,

V. Baggiolini, C. Roderick, CERN, Geneva, Switzerland

Abstract

The CERN Accelerator Data Logging Service
(NXCALS) stores data generated by the accelerator infra-
structure and beam related devices. This amounts to 3.5TB
of data per day, coming from more than 2.5 million signals
from heterogeneous systems at various frequencies.
Around 85% of this data is transmitted through the Con-
trols Middleware (CMW) infrastructure. To reliably gather
such volumes of data, the acquisition system must be
highly available, resilient and robust. It also has to be
highly efficient and easily scalable, as data rates and vol-
umes increase, notably in view of the High Luminosity
LHC.

This paper describes the NXCALS time series acquisi-
tion software, known as Data Sources. System architecture,
design choices, and recovery solutions for various failure
scenarios (e.g., network disruptions or cluster split-brain
problems) are covered. Technical implementation details
are discussed, covering the clustering of Akka Actors col-
lecting data from tens of thousands of CMW devices. The
NXCALS system has been operational since 2018 and has
demonstrated the capability to fulfil all aforementioned re-
quirements, while also ensuring self-healing capabilities
and no data losses during redeployments.

INTRODUCTION
The CERN Accelerator Data Logging Service

(NXCALS) stores data generated by the accelerator infra-
structure and beam related devices, and in-turn makes this
data available to the CERN community [1].

The NXCALS architecture is composed of three main
subsystems (Figure 1): data acquisition and ingestion, data
storage and compaction, and APIs or applications for data
extraction. This paper focuses on the first subsystem, also
known as NXCALS Data Sources (DS).

Figure 1: Overview of the NXCALS architecture.

The DS acquire data from the accelerator devices
through the Controls Middleware (CMW) [2] using a sub-
scription mechanism. One subscription corresponds to a
data channel through which the device publishes data of
one of its attributes (properties) to the DS. All information
needed to configure the data sources and the subscriptions
are managed within the central Controls Configuration Ser-
vice (CCS) [3] and stored in the Controls Configuration
Database (CCDB). Subscriptions are configured using a
web interface (Controls Configuration Data Editor –
CCDE), directly by end users (e.g. device experts, physi-
cists, or operations teams) who know which data they want
to be stored in NXCALS.

The NXCALS DS have to fulfil many requirements, but
the most important is to reliably acquire huge amounts of
data from accelerator infrastructure and beam related de-
vices and transmit it to the NXCALS storage system with-
out any data loss.

This is a surprisingly difficult requirement to fulfil. It
needs a thorough analysis of the common challenges en-
countered when developing distributed systems.

The main concepts that must be addressed are:
 Fault Tolerance and Resilience - designing mecha-

nisms to handle process failures (e.g., out of memory
crashes) or network failures and partitions without ser-
vice disruption.

 Load Balancing - distributing subscriptions evenly
across processes to prevent overloading specific ma-
chines and their network interfaces.

 Scalability - being able to handle an increased number
of subscriptions just by adding additional resources.

 Security and Authentication - implementing appro-
priate measures to protect data and prevent unauthor-
ised access.

 Monitoring and Debugging - obtaining detailed in-
formation about the system performance and behav-
iour, especially when issues arise.

The rest of the paper will focus on how the NXCALS DS
deal with the first three challenges in the list above.

SYSTEM OVERVIEW AND
HIGH-LEVEL ARCHITECTURE

Figure 2 shows a high-level overview of the DS subsys-
tem. Conceptually, the sequence of tasks executed by a data
source process is straightforward:

1. The DS begins by retrieving subscriptions metadata

from the configuration database.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP068

THPDP068

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1494

Software

Software Architecture & Technology Evolution

2. Using CMW, the DS establishes a subscription to a de-
vice, from which it receives data.

3. If necessary, it applies basic data processing to the ac-
quired data (e.g. filtering on change).

4. Finally, it forwards the processed data to the NXCALS
ingestion subsystem.

Figure 2: High-Level DS subsystem overview.

This workflow runs seamlessly for a relatively small
number of subscriptions that can be managed by a single
process. However, a single process is not enough to cope
with the very high number of subscriptions and huge data
flow present in the CERN accelerator complex. As such,
the DS subsystem was built to distribute the workflow
across multiple processes and machines, carefully coordi-
nating all of them.

The Master-Worker model
A Master-Worker data processing model is used, which,

as the name suggests, uses two primary types of actor pro-
cesses:
1. Masters, that coordinate Workers.
2. Workers, that execute tasks, such as handling subscrip-

tions and data.
A single Master instance assigns subscriptions to many

Workers following a distribution strategy described later.
The Workers handle the subscriptions assigned to them by
subscribing to the relevant accelerator devices, processing
incoming data, and forwarding it to the NXCALS system.
In addition, there are Validators, a special kind of Worker,
which checks whether a subscription complies with certain
"validation criteria" regarding the data it processes (e.g.
format and size). Validators are also orchestrated by the
Master as described later. Master and Workers communi-
cate as follows:
 At start-up, a Worker (or a Validator) registers with the

Master and provides information about its processing
capabilities.

 At runtime, Workers periodically communicate their
status and various statistics about their subscriptions to
their Master.

 The Master maintains a registry of available Workers
and keeps track of their current workload and availa-
bility.

IMPLEMENTATION
Implementing the NXCALS DS subsystem was a chal-

lenging engineering task. Following a thorough analysis of
the requirements and challenges mentioned in the Introduc-
tion, a suitable framework was selected to build upon, ra-
ther than re-implementing the wheel.

The Akka Framework
Akka [4] is a software framework that can be used to de-

velop distributed, concurrent, fault-tolerant and scalable
applications. By using the Actor Model, it raises the ab-
straction level and provides a better platform to build scal-
able, resilient, and responsive applications. Fault-tolerance
is achieved by the "let it crash" paradigm that the telecom
industry has used with great success to build self-healing
applications and systems that never stop.

The structure of Akka systems is comprised of multiple
Actors running in processes called Akka nodes, which are
grouped together to form an Akka cluster. An Akka cluster
typically runs on several physical machines.

Below is a list of Akka features, with a short explanation
of why they were important for the NXCALS DS:
 The Akka Actor Model provides high-level abstrac-

tion for concurrent programming. Akka Actors handle
state, ensure thread safety and make concurrency sim-
pler. In the DS Actors are used to implement Masters,
Workers and Validators.

 Actor Location Transparency abstracts away the
physical location of Actors on machines, making it
possible to interact with distributed Actors as if they
were local. In the DS, this functionality allows to trans-
parently use several physical machines and distribute
the load over them.

 Dynamic Membership allows nodes to join and leave
the cluster dynamically. This enables the DS cluster to
easily scale out by adding machines as needed.

 Supervision and Failure Detection allows Actors to
watch each other and detect failures. When one Actor
watches another, the first Actor receives a notification
when the second Actor terminates or becomes unavail-
able. This also works within an Akka Cluster and al-
lows to detect when nodes become unreachable or
crash. Supervision is very useful to achieve fault toler-
ance and resilience. A Master can supervise all its
Workers and will be notified when any of them be-
comes unavailable. The Master can react appropriately
by reassigning the failed Worker's subscriptions to
other Workers.

In addition to implementing Masters, Workers and Vali-
dators using Akka Actors, NXCALS DS use Actors to im-
plement most system components which run on separate
Akka nodes located on different machines. These nodes
take on specialized roles, such as ValidationMaster, Vali-
dationExecutor, SubscriptionManager, and WorkRecep-
tionist. Describing them goes beyond the scope of this pa-
per.

Akka Actors communicate exclusively through asyn-
chronous messages. By default, Akka implements at-most-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP068

Software

Software Architecture & Technology Evolution

THPDP068

1495

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

once delivery, meaning that each message sent by an Actor
is delivered either zero or one times. In other words, mes-
sages may be lost [5], which is not acceptable for the
NXCALS needs.

To address this issue, the communication protocol was
modified to enable at-least-once delivery, thus ensuring
that the receiver of a message will receive it. To do this, an
Acknowledge and Retry mechanism was implemented.
The Receiver must acknowledge each message from the
Sender. If the Sender does not receive the acknowledge-
ment within a specified time limit, it will retry by sending
the initial message again.

MAIN WORKFLOWS
This section describes the main workflows that are exe-

cuted in the Data Sources subsystem.

New Subscription
Depicted in Figure 3, this workflow starts when the Mas-

ter detects that a new subscription has been configured in
the CCDB. The Master tells the Validator to check if the
new subscription complies with the validation criteria. If
validation is successful, the Master assigns the subscription
to a Worker. If not, the subscription is put into the Valida-
tion Waiting Room, where it waits to be re-validated after
a configurable period.

Next, the Master uses a distribution strategy to select an
appropriate Worker to handle the validated subscription.
The default strategy is very straightforward and tries to en-
sure an even distribution of subscriptions among all Work-
ers.

The Master typically assigns a new subscription to the
Worker with the fewest subscriptions. It may also consider
other criteria (so-called “labels” as described later). Fi-
nally, the Master tells the selected Worker(s) to start pro-
cessing the data coming from the subscription.

Figure 3: New subscription arriving in the system.

New Worker joining the cluster
When a Worker starts, it registers with the Master. If

there are already existing Workers in the system with active
subscriptions, the Master will promptly re-assign some
subscriptions from the existing Workers to the new Worker

(Figure 4). The goal is to evenly distribute subscriptions
across all Workers.

Figure 4: Worker joining the cluster.

Adding a subscription to an existing Worker
When the Master assigns a new subscription to a Worker,

the following steps are executed (Figure 5):
1. The Worker activates the subscription it has been as-

signed.
2. It processes the resulting data flow by applying trans-

formations defined at the subscription level. The trans-
formations are being applied using several features
provided by the Java RX library.

3. Finally, it forwards the transformed data to the
NXCALS ingestion system.

Figure 5: Worker operational mode.

Handling Subscription Failures
Workers monitor their active subscriptions and regularly

report statistics about them to the Master. When a Worker
notices that one of its subscriptions fails (disconnects), it
informs the Master. The Master promptly tells the Worker
to stop the subscription and hands it over to the Validator,
which tries to re-establish and validate the subscription as
described earlier.

Orderly Shutdown of a Worker
As mentioned, one of the crucial requirements of the sys-

tem is to ensure no data losses. It strongly impacts the pro-
cedure for shutting down a Worker (e.g. for redeployment).
Figure 6 illustrates the sequence of actions carried out dur-
ing a standard Worker termination process:

1. When a Worker receives a signal to shut down, it sends

a message to the Master to inform it.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP068

THPDP068

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1496

Software

Software Architecture & Technology Evolution

2. The Master acknowledges the Worker's message and
redistributes all its subscriptions to other available
Workers.

3. Once the Master receives confirmation that all the
Worker’s subscriptions have been initiated elsewhere,
it instructs the terminating Worker to stop all its sub-
scriptions.

4. Following this, the Worker proceeds with its own ter-
mination.

Figure 6: Worker leaving the cluster.

During this process, it may happen that a given subscrip-
tions is active on two different Workers (the terminating
one and the one taking over). This will result in duplicate
data being sent to NXCALS during this time. This is not a
problem, because the NXCALS ingestion system dedupli-
cates data during a nightly data merging and compaction
process.

FURTHER IMPLEMENTATION DETAILS
State Persistence

The Master keeps track of available Workers and their
current subscription assignments. It persists this state in ex-
ternal storage using the Akka Persistence extension. This
extension provides storage and retrieval of domain events
to maintain the system’s state and preserves it across sys-
tem restarts. Concretely, for the NXCALS DS, the akka-
persistence-jdbc extension is used to store the state in an
Oracle database.

The Master persists snapshots of subscription assign-
ments whenever they change, which means that the per-
sisted state is always up-to-date. When a new Master starts,
it simply retrieves the most recent saved snapshot by its
predecessor and becomes fully operational. No state needs
to be persisted for the Workers or the Validator.

Achieving Fault Tolerance and Resilience
The NXCALS DS subsystem must be highly available

and resilient, even in the case of node crashes and network
problems.

Unfortunately, it is impossible to distinguish between
node crashes and temporary network failures. The Akka
cluster does have a failure detector that will notice node
crashes and network partitions, but it cannot differentiate
between the two failure cases.

The naive approach to handle any failure would be to
remove an unreachable node from the cluster after a
timeout. This works fine for crashes and short, transient
network partitions, but it does not work for longer network

outages. A longer network failure creates two separated
groups of nodes, whereby each group sees the other one as
crashed or unreachable. This may eventually lead to crea-
tion of two separated, disconnected clusters that each con-
tinue to work on their own. This problem is known as a
“Split-Brain scenario” and may lead to inconsistent behav-
iour or data corruption. Below, the different crash scenarios
are described, together with how they are handled.

Handling a Worker Crash
As described previously, the Master monitors the avail-

ability of all active Worker nodes, using the Akka supervi-
sion mechanism. It receives notifications when a Worker
crashes or becomes unavailable due to network problems.
The Master then reassigns all its subscriptions to other
Workers that are currently operational and capable of pro-
cessing the subscriptions.

Handling a Master Crash
In the NXCALS DS, the Cluster Singleton pattern is

used to react to a crash of the Master. This pattern ensures
that only one instance of a specific type of Actor (in this
case, one instance of the Master) is active within the cluster
at any given time. In the current production setup, three
Master instances exist, but only one is active at a given
time. If the active Master goes down (whether due to rede-
ployment or a crash), one of the other two, typically the
oldest one, takes over. The new Master retrieves its state
from the snapshots that the previous Master persisted, and
then retrieves data from the configuration database to in-
corporate any potential changes made in the meantime.

Handling a Split-Brain Problem
Handling a Split-Brain scenario is more challenging.

Among the strategies Akka provides for dealing with this
problem, the Static Quorum was chosen.

In essence, this strategy involves downing the unreacha-
ble nodes if the number of remaining healthy nodes is equal
or greater to a predefined constant known as the quorum
size. Simply put, the quorum size defines the minimal num-
ber of nodes required for the cluster to remain operational.

This quorum typically determines the number of the
members in the cluster and should not be greater than
quorum-size*2 - 1. For the NXCALS DS, the quorum size
is based on the number of Master instances. For 3 Master
instances, the quorum size is 2, and this number is estab-
lished and fixed during the initial configuration of the clus-
ter.

It is important to highlight that in the cluster that is shut
down, the Master instances will exit automatically because
they are subject to the Static Quorum mechanism. At the
same time, the Workers and their subscriptions continue to
run, which avoids any data loss. Naturally, the active Mas-
ter in the healthy, surviving cluster will consider these sub-
scriptions as missing, and will re-create and redistribute
them to its own Workers. This approach allows to avoid
any data loss that may otherwise occur during the time
needed to detect an unhealthy Worker (and its otherwise
self-downing procedure) by the Master and the subsequent
redistribution of their subscriptions.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP068

Software

Software Architecture & Technology Evolution

THPDP068

1497

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Achieving Scalability
It is important to underline again that the Workers self-

register to the Master, rather than being spawned by it. This
design enhances the system’s scalability and makes it pos-
sible to dynamically increase processing capacity, simply
by adding new Workers, that will seamlessly join the sys-
tem, and process subscriptions allocated to them by the
Master (Fig. 7).

Figure 7: Worker registering to Master.

Subscription Labelling
Subscriptions and the data they produce have different

characteristics. For instance, some subscriptions can pro-
duce heavy/big data with small frequencies, while others
can produce small data with higher frequencies, or a com-
bination of “heavy” data published at high frequencies.

Labels have been introduced to the NXCALS DS which
can be used to mark subscriptions according to their char-
acteristics. These labels are simply a property of a subscrip-
tion and can be customized by users or system maintainers.
For example, mission critical subscriptions can be labelled
as such.

The labels are used by the Master when distributing sub-
scriptions to Workers. For example, it can assign heavy
subscriptions or mission-critical subscriptions to dedicated
Workers or nodes.

DEPLOYMENT EXPERIENCE
The NXCALS DS subsystem is deployed in production

since 2019 and has demonstrated remarkable robustness
and high availability. The DS currently handle around 90k
subscriptions, which produce on average, 100k messages a
second, and 3.5TB of data a day.

On several occasions, the DS have been exposed to sub-
scriptions that, due to misconfiguration by equipment ex-
perts, have produced abusive amounts of data. The DS sur-
vived these events, thanks to the labelling mechanism, that
allowed the bad subscriptions to be isolated, and therefore
avoid any data losses on the other subscriptions.

It was also observed on several occasions (mainly during
infrastructure maintenance periods) how the Akka cluster
shuts itself down due to network problems and then fully
recreates itself after the network is restored, without any
data losses.

SUMMARY
This paper has given an overview of the requirements for

the NXCALS Data Sources, with the overarching impera-
tive of not losing any data during acquisition and ingestion.

The chosen architecture has been presented, including
the reasoning for implementing the Data Sources as a dis-
tributed system, using a Master/Worker paradigm, and the
engineering challenges related to this. The Akka platform
has been described, together with an explanation of how its
features serve as a strong basis for the implementation of
the NXCALS Data Sources.

The resulting system has demonstrated remarkable ro-
bustness and high availability, and there is confidence that
it will scale with the ever-growing data volumes that will
be produced by the upcoming LHC High Luminosity pro-
ject.

The use of the Akka Platform and the modular design of
the Data Sources described in this paper are not specific to
CERN. Therefore, this software could be adapted to meet
similar data acquisition needs in other institutes and do-
mains.

REFERENCES
[1] J. Woźniak and C. Roderick, “NXCALS – Architecture

and challenges of the next CERN accelerator logging ser-
vice”, in Proc. 17th Int. Con. on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS’19), New
York, USA, Oct. 2019, pp. 1465-1469.
doi:10.18429/JACoW-ICALEPCS2019-WEPHA163

[2] W. Sliwinski and J. Lauener, “How to design & implement
a modern communication middleware based on ZeroMQ”,
in Proc. 16th Int. Con. on Accelerator and Large Experi-
mental Physics Control Systems (ICALEPCS’17), Barce-
lona, Spain, Oct. 2017, pp. 45-51. doi:10.18429/JACoW-
ICALEPCS2017-MOBPL05

[3] L. Burdzanowski et al., “CERN Controls Configuration Ser-
vice - a challenge in usability”, in Proc. 16th Int. Con. on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’17), Barcelona, Spain, Oct 2017, pp 159-
165. doi:10.18429/JACoW-ICALEPCS2017-TUBP

[4] https://akka.io
[5] https://www.infoq.com/articles/no-reliable-

messaging/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP068

THPDP068

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1498

Software

Software Architecture & Technology Evolution

