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Abstract
The design of acquisition electronics for particle accelera-

tor systems relies on simulations in various domains. System
level simulation frameworks can integrate the results of spe-
cific tools with analytical models and stochastic analysis.
This allows the designer to estimate the performance of
different architectures, compare the results, and ultimately
optimise the design. These simulation frameworks are often
made of custom scripts for specific designs, which are hard
to share or reuse. Adopting a standard interface for modu-
lar components can address these issues. Also, providing a
graphical interface where these components can be easily
configured, connected and the results visualised, eases the
creation of simulations. This paper identifies which charac-
teristics ISPy (Instrumentation Simulation in Python) should
fulfil as a simulation framework. It subsequently proposes a
standard format for signal-processing simulation modules.
Existing environments which allow script integration and an
intuitive graphical interface have then been evaluated and
the KNIME Analytics Platform was the proposed solution.
Additionally, the need to handle parameter sweeps for any
parameter of the simulation, and the need for a bespoke vi-
sualisation tool will be discussed. Python has been chosen
for all of these developments due to its flexibility and its
wide adoption in the scientific community. The ensuing
performance of the tool will also be discussed.

Keywords: simulation, system design, digital twin,
Python, performance

INTRODUCTION
The design of electronic acquisition systems for beam

instrumentation can be a lengthy process implying several
steps in which the designer has to optimize different parame-
ters. The design steps typically cover architecture definition,
component selection, algorithm selection and performance
estimation. For systems of a certain size, the number of pa-
rameters is not manageable directly, hence simulation tools
are required to assist in producing systems that meet the spec-
ifications. A number of Python scripts where developed in
the past within the CERN Beam Instrumentation (BI) group
for each of the individual steps mentioned above. This paper
will present the effort to have a simulation tool integrating
the functionality in those scripts and extending it to cover
further needs.

SIMULATION FRAMEWORK
REQUIREMENTS

Several high level requirements were identified for the
simulation tool. The tool should be based on components
∗ manuel.gonzalez@cern.ch

representing the various elements of the acquisition system
(e.g. beam characteristics, filters, cables, amplifiers). Users
should have the ability to extend the tool with new compo-
nents without needing detailed knowledge of the tool internal
workings.

Users will interact with the tool through a graphical inter-
face, allowing them to describe simulations by connecting
the different components, configuring their properties and
initiating simulations. The resulting data will be stored in
files, along with the simulation schematic and the parame-
ter configuration, ensuring proper tracing of each dataset.
Additionally, a visualisation tool will be provided, offer-
ing diverse views of the simulation results, complete with
selection and filtering capabilities to facilitate result inter-
pretation.

The tools and libraries employed for the implementation
should be open source, encouraging collaboration and long-
term sustainability. Furthermore, the definition of the simu-
lations and their execution results should be as independent
as possible of the specific tools used for their creation. This
design principle will enable easy integration with other tools
and facilitate the future evolution of the simulation tool.

There was already an existing set of Python scripts for
partial simulations where a considerable effort had been
invested. Providing methods to reuse these scripts either di-
rectly in a Python implementation or in any other compatible
way would be necessary.

CHOICE OF ENVIRONMENT

Given the requirements presented in the previous chapter,
we considered several possibilities for the actual implemen-
tation. An initial idea was to develop a new tool based on
Python and PyQt. These are well known in our team and
there are many libraries that could be reused for the data
processing, storage and visualisation. Another possible ap-
proach was to use an existing environment that could be
extended to cover our simulations. We identified two possi-
ble tools: the KNIME analytics platform [1] and Kepler [2].

After a detailed technical study, it was clear it would
have been possible to implement the tool with any of the
three proposed solutions. However, using PyQt would have
meant a larger development effort and future maintenance.
In addition there would not have been any synergies with
similar tools.

Out of the two existing platforms, Kepler seemed to have
a smaller and less dynamic community. Additionally, the
integration with Python seemed somehow more complicated
than in KNIME. These points lead us to the selection of
KNIME.
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Figure 1: A configurable component that takes an input,
executes either a deterministic or stochastic Python function,
and subsequently produces an output. The input and output
data are stored in binary format on disk.

INTEGRATION IN KNIME
While primarily an open-source data analytics and integra-

tion tool, the KNIME Analytics Platform can also enable the
easy definition of customised and reusable graphical blocks
that can configure and execute Python code. We selected
version 4.6.5 as the foundation for building ISPy, ensuring
compatibility with the CERN computing environment.

In the development process, the first step involved stan-
dardizing the definition of a component, where we estab-
lished the required structure for source and configuration
files to create distinct and reusable components represent-
ing the simulated instruments. Figure 1 provides a visual
representation illustrating this concept.

To accommodate the users of the simulation tool, the
development process put in place ensures that designers can
effortlessly create new component types and users can easily
utilize them to build simulations. The collection of these
components constitutes the ISPyLibrary and resides in a
Git repository, enabling updates and version control for the
components.

Simultaneously, we faced the challenge of ensuring that
ISPy could seamlessly integrate with KNIME while remain-
ing functional as a standalone tool. To address potential
issues such as platform inactivity or discontinued support,
we had to take extra precautions, which added complexity
to the development process but ultimately strengthened the
resilience of the simulation framework. Hence, we chose to
configure components using reproducible XML-XSD pairs,
enabling straightforward configuration and improved compo-
nent validation both within and outside the KNIME platform.
Similarly, the configuration of a simulation chain, consisting
of multiple components, is defined using an XML document.

Regarding the transmission of computed data from one
component to another, we faced a choice between using
a KNIME-specific format, known as KNIME data tables,
and simply storing the data in binary format on disk. Perfor-
mance tests clearly showed that the latter is faster. By storing
the data in binary format on the disk, we also ensure that
all component outputs are retained until manually removed.
This approach facilitates access to simulation data at any
time but comes with a trade off in terms of disk space usage,
as all component data is preserved and not automatically
deleted after component execution.

After configuring and executing a simulation chain, data

is systematically saved in an individual directory, named
according to the time of execution. This data can be loaded,
plotted, or deleted using dedicated pre-made or customised
components. KNIME provides a wide array of visualisation
options within its Node Repository, including line, scat-
ter, histogram, and various other types of plots. However,
these options have demonstrated performance limitations
when dealing with larger array sizes. To enable the rapid
visualisation of larger signal sizes we developed a KNIME
custom component that utilizes the Matplotlib library [3].
This custom visualisation component can also serve as a
probe, streamlining the debugging process for newly de-
signed chains. Finally, for comprehensive visualisation and
analysis of an entire simulation chain, it is recommended to
utilize the standalone Data Analysis and Visualisation Tool
(DAVIT), which will be discussed later.

PARAMETER SWEEP SIMULATIONS
A parameter sweep is a computational technique used

in a wide range of simulations to systematically vary input
parameters across specified ranges to find an optimal design
according to some criteria. In the case of ISPy, a parameter
sweep simulation is executed for a chain that consists of com-
ponents that are uniquely configured multiple times during a
single execution. Every component has multiple parameters
that can be swept, and all combinations of values need to be
considered. The subsequent components can also be further
configured multiple times, which leads to an increase in the
number of uniquely configured chains. Essentially, for every
new component configuration, a new branch of simulations
is created.

Figure 2 shows an example of a configuration with param-
eter sweeps. Within this chain, the second and third compo-
nents undergo multiple configurations, indicating that they
are set up with different parameters more than once. As a re-
sult, the original simulation chain is divided into four distinct
chains, each demanding separate execution as illustrated in
Fig. 3. The total number of unique resulting chains is
determined by multiplying the number of configurations
chosen for each component.

By examining the interconnections among components
defined in the simulation chain’s configuration file, we can
pinpoint the dependencies of each process and construct the
resulting process trees. This involves implementing a modi-
fied Depth First Search (DFS) algorithm [4] on a directed
graph. We initiate this DFS from nodes executed later in
the simulation and work our way back to the initial nodes
responsible for the simulation’s execution. During the DFS
traversal, previously visited nodes are continually pushed
onto the stack to maintain the correct execution sequence.
After completing the search paths, they are reversed, and any
revisited nodes are removed. This process generates mul-
tiple execution paths for uniquely configured chains. The
final step involves identifying repetitions among these DFS
paths to avoid re-executing identical sub-chains. The tables
in Fig. 3 illustrate the resulting dependencies and process
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(a) Example chain of components.

(b) Expansion into 4 uniquely configured chains.

Figure 2: Example chain that is configured multiple times.

Figure 3: Process dependencies and process paths. The
colors indicate new simulation branches.

paths of the example in Fig. 2.
To facilitate the execution of a parameter sweep simula-

tion, a custom component named SWEEP-RUN has been
developed, which carries out the algorithm described above
along with an intuitive UI. This component allows the vari-
ation of parameter values in either a logarithmic or linear
fashion, or their arrangement within a specified range using
a designated step size. Additionally, for user convenience
there are options to generate parameters using a multipli-
cation factor or filter them within the table using various
criteria.

In Fig. 4, a practical example is presented, featuring
a simulation alongside the UI table displaying the sweep
parameter values. In this example, the horizontal and ver-
tical positions of the beam with respect to the monitor are

(a) Simulation chain.

(b) Parameter sweep user interface. The parameters 𝑥 and 𝑦 corre-
spond to the horizontal and vertical displacement of the particle
beam with respect to the electrical center of the monitor, while
𝐿𝑃_𝑊𝑛 represents the cut-off frequency of the low pass filter. For
simplicity, certain columns are hidden from the table.

Figure 4: KNIME workflow designed for conducting a pa-
rameter sweep simulation.

swept linearly three times each, while the cut-off frequency
is arranged from 0.1 to 1 kHz in increments of 0.1 kHz. This
combination results in a total of 3 × 3 × 10 = 90 unique
configurations for the simulation chain. This example illus-
trates how a small amount of configurations can lead to a
significant increase in workload.

STORAGE OF RESULTS
The results of the simulation executions are typically a

set of scalar values and waveforms gathered at the end of
the simulation chain. Values at selected intermediate points
can also be included as part of the output data. Ideally
one would like to keep all these results together and at the
same time add any configuration parameters used as well
as any other related metadata. This lead us to the use of
the HDF5 format [5], which is designed to store large and
diverse amounts of data in a single file. This suits very well
the case for our tool, where the simulation can produce large
and varied amounts of data. Additional functionality like
caching or compression is also included in the extensive set
of libraries available in different languages (e.g. C, C++,
Java, Python)

Other important factors that lead us to choose this format
for the results was its usage within the group in several other
projects dealing with large amounts of data and the large
community of scientific users behind its development and
regular utilisation.

VISUALISATION OF RESULTS
To facilitate the visualisation of the numerous HDF5 files

generated by the simulations, we extended a general purpose
Python application, known as the Data Analysis and Visual-
isation Tool (DAVIT), that was developed previously in the
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group. Accessible both within ISPy and as a standalone ap-
plication, this tool is designed to filter, analyse and examine
the bundle of simulation outputs, presenting the data in a
variety of formats including tables, scatter plots, and single
or multi-axis line plots.

As illustrated in Fig. 5, the GUI features two principal
panels. The left panel accommodates navigation through
the internal structure of the hierarchical files, enabling the
search of groups, datasets, attributes, and array dimensions.
The right panel mainly focuses on visualisation, offering a
range of options for graphical representation of the selected
data. These options include FFT processing, mean removal,
and interactive point inspection upon cursor hover.

Figure 5: Screenshot of the Data Analysis and Visualisation
Tool (DAVIT). The display shows the simulation results for
all components across 8 different configuration chains.

A key feature of DAVIT is its generic approach to data
processing. Internally, the tool transforms data into Python
Pandas DataFrames [6], which enables operations such as
transposition, slicing, and the merging of separate datasets.
Moreover, the application provides the capability to apply
filters to both file names and attributes, a feature that is
especially useful for tracking variations in parameter sweeps.

Figure 6: Filtering use case. The left panel displays available
filter options, while the right window shows the HDF5 file
explorer post-filtering.

Figure 6 illustrates an example of filter usage. It demon-
strates how a user can easily filter simulations to focus on
the ADC component given a sampling frequency sweep that
ranges from 3 MHz to 3.5 MHz. Note that these config-
ured filters can also be saved as presets, thereby facilitating
the effortless replication of specific visualisations in future
analyses.

PERFORMANCE - EXAMPLE
The simulation tool can be used to perform a parame-

ter sweep simulation of a beam position monitor (BPM)
system’s acquisition electronics. The BPM system is an in-
strument measuring the transverse position of the particle
beam in an accelerator. The acquisition part of the system
simulated in this example is a direct digitisation system, in
which the analog conditioning electronics are minimalistic
and the monitor waveforms are sampled at high sampling
rates, allowing most of the signal processing to be performed
in the digital domain. Figure 7 shows a screenshot of the
simulation chain in KNIME. Most of the modules referring
to BPMs and electronics are based on existing simulation
code developed in the BI group and described in detail in
this thesis [7].

Figure 7: Example of an ISPy simulation chain in KNIME,
simulating the acquisition electronics of a BPM.

The first module from the left generates the beam current
signal for a circular machine, with parameters such as the
number of charges, revolution frequency, number of turns,
harmonic number, etc. It is based on an analytic Gaussian
model of the beam.

The second module is the button BPM, producing four
voltages in response to the beam current. It is parametrised
by the button geometry and by the beam’s relative transverse
position. For the sake of clarity, only the first two of the four
outputs, linked to the horizontal plane, are further shown in
the diagram. Two identical processing chains follow.

First a cable module, using an analytic parametric model
to simulate the effect of dispersion based on the cable length,
geometry and material properties. Then two analogue filters,
a shaping low pass filter and an anti-aliasing filter; the same
module was used but with different configurations for band-
width and filter order. The module is a wrap of the Bessel
function of the Python SciPy signal module [8].

The replicator module generates a parametric number of
identical replicas of the input signal, 1000 in this example.
This step is needed to feed stochastic simulation modules,
which have models based on stochastic functions. The fol-
lowing ADC module is an example of a stochastic module:
this module, on top of sampling the input signal in function
of the parametric sampling rate, models the converter noise
based on the effective number of bits and the uncertainty
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in the sampling phase. The noise is described by a white
Gaussian process and the phase by a uniformly distributed
function within the sampling period. Hence, to each of
the 1000 input replicas, a different sampling phase and a
different noise sequence are applied.

The waveform detector performs a waveform detection
algorithm to identify the first sample to use for the following
digital processing. The window selector module provides
for each replica a selection of points with a parametric off-
set and length with respect to the identified trigger. Finally,
the Root-Mean-Square (RMS) module computes a single
power result per replica which is combined with the result
of the other electrode by the sigma-delta normalisation mod-
ule. The normalised value is then converted into a beam
position result by the NORM2M module, which takes its
configuration from the BUTTON-BPM configuration.

The output is a sequence of 1000 positions, simulating a
distribution of possible resulting positions for the defined
acquisition chain. The mean value and the standard deviation
of this distribution provide an estimation of the offset and
resolution performance of the acquisition system.

The simulation is configured to be a parameter sweep sim-
ulation by the SWEEP-RUN module: the beam horizontal
position is swept with three possible values and the beam
number of charges is configured with a series of 5 values.
So the simulation is run outside of KNIME with all the 15
combinations of swept parameters, providing a description
of how the system’s measurement offset and resolution vary
with the beam position and intensity. The result, consisting
in a folder containing all the configuration files and output
signals, is 735 MB of data, produced in less than 4 seconds.

FUTURE WORK
Most of the ISPy core modules have been used for the

analysis and initial design of BPM system prototypes for the
future LHC upgrade [9], proving its potential and extending
its initial development into its current state. During those
studies BPM related libraries have been developed and added
to the ISPy toolset. Further development of those libraries
and the creation of new ones will happen naturally with the
adoption of ISPy for more projects, increasing its potential
and capabilities with use. One of the next projects to adopt
ISPy is the consolidation and upgrade of the AWAKE BPM
system [10]. There ISPy will be used to evaluate the potential
improvement of the performance of the proton-line BPMs
using an RFSoC based DAQ. ISPy will also be used to assess
the compatibility of such DAQ with the down mixing front-
end system currently used in the electron-line BPM system
designed by TRIUMF [11,12], in an effort to have a more
standardised architecture.

In addition to BPM applications, ISPy is expected to play
an important role in validating the developments related to
the renovation of the front-end electronics, calibration and
DAQ systems for the fast beam current transformers foreseen
during the 3rd long shutdown of the CERN PS accelerator
complex. In particular, it will enable the estimation of the

accuracy and signal-to-noise ratio (SNR) of the beam current
and intensity measurements used by machine operators to
optimize the quality of the beams delivered to the various
experiments.

These additional systems will have a threefold impact
on ISPy: validation of its flexibility, expansion of the user
community seeding the potential for its use outside CERN
(the AWAKE studies will be done in in collaboration with
the Diamond Light Source), and development of new digital
and analogue modules.

CONCLUSION
We have presented the development and application of

Instrumentation Simulation in Python (ISPy) as a compre-
hensive simulation framework for data acquisition systems.
The need for such a tool arises from the complex and it-
erative process of designing acquisition electronics, which
involves optimizing an increasing number of parameters.

ISpy offers modularity, a user-friendly interface, and effi-
cient result storage. Built on open-source principles, ISPy
maintains adaptability to future tools. Leveraging the KN-
IME Analytics Platform, it handles parameter sweep simula-
tions effectively. ISPy’s use of the HDF5 format streamlines
data storage, and the Data & Visualisation Tool simplifies
result exploration. It has been demonstrated through a BPM
acquisition system example, offering insights into system
performance.

Future work includes library expansion, community
growth, and application in diverse projects. Although mainly
driven by beam instrumentation systems, the tools is generic
enough to be used in other environments.
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