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Abstract
In agreement with the IEC 61511 functional safety stan-

dard, fail-safe application programs should be written using
a Limited Variability Language (LVL), that has a limited
number of operations and data types, such as LD (Ladder
Diagrams) or FBD (Function Block Diagrams) for safety
PLC (Programmable Logic Controller) languages.

The specification of safety instrumented systems, as part
of the Safety Requirements Specification document, shall
unambiguously define the logic of the program, creating
a one-to-one relationship between code and specification.
Hence, coding becomes a translation from a specification
language to PLC code. This process is repetitive and error-
prone when performed by a human.

In this paper we describe the process of fully generating
Siemens TIA portal LD programs for safety applications
from a formal specification. The process starts by generating
an intermediate model that represents a generic LD program
based on a predefined meta-model. This intermediate model
is then automatically translated into code.

The idea can be expanded to other equivalent LVL lan-
guages from other PLC manufacturers. In addition, the
intermediate model can be generated from different specifi-
cation formalism having the same level of expressiveness as
the one presented in this paper: a Cause-Effect Matrix.

Our medium-term vision is to automatically generate
fail-safe programs from diverse formal specification
methods and using different LVLs.

Keywords: functional safety, safety instrumented
systems, PLC

INTRODUCTION
Programmable Logic Controllers (PLCs) are widely rec-

ognized as the standard for industrial process control. One
of the main reason is that PLCs are robust and reliable de-
vices that can work in harsh environments. The Mean Time
Between Failures (MTBF) of PLCs are normally very high.
For example, a Siemens CPU S7-1515-2 PN has a MTBF
of 27.7 years (data extracted from [1]).

PLC manufacturers also provide solutions for safety sys-
tems. When in an industrial process, a particle accelerator,
a machine or any other kind of system, a failure may lead to
a risk for humans, the environment or a big economic and
reputations loss, the project responsible must reduce the risk
the to the tolerable levels defined by the organization, com-
pany or regulations. Fail-safe PLCs are devices certified by
organizations like TÜV SÜD [2], that have been designed to
follow the IEC 61508 [3] Functional Safety standard. These
∗ andrea.germinario@cern.ch

devices are used to deploy the Safety Instrumented Func-
tions (SIF) in a way of a software program meant to reduce
the risks mentioned above. The MTBF of fail-safe PLCs
is also high but lower than the one of a standard PLC. For
example a S7-1515F PLC has a MTBF of 24.5 years. This
distinction arises from its internal architecture and increased
complexity, which enables it to substantially decrease the
occurrence of dangerous undetected failures when compared
to a typical PLC. In discussions concerning safety-critical
systems, only dangerous undetected failures are pertinent.

Fail-safe PLCs are able to detect most of their failures
as stated by their Safe Failure Fraction (SFF) ≥ 99%. This
means that the dangerous undetected failures are ≤ 1%. This
number is so low because the safety systems internal to a
safety PLC cover most of the internal failures of the con-
troller, including hardware, operating system, firmware, etc.
On the contrary, it clearly does not cover the user PLC ap-
plication program (AP) for the SIFs.

The IEC 61511 standard [4] provides the guidelines to
develop Safety Instrumented Systems (SIS) for industrial
processes. The Clause 12 of the IEC 61511-1 focuses in the
SIS AP development requirements. Among other things, it
recommends the usage of Low Variability Languages (LVL)
to write these programs.

Code generation is a common practice in software en-
gineering. It has a lot of advantages in quality and effi-
ciency like reducing the amount of coding errors introduced
by the programmer, speeding up the development process,
etc. For PLC programs, there are not many available tools
for code generation. A good example is PLC coder from
MathWorks [5], where ST (Structured Text) programs from
the IEC61131-3 [6] can be generated automatically from
Simulink models. At CERN, we use the UNICOS [7] frame-
work to generate PLC programs from high level specifica-
tions.

However, most of the available tools cannot generate
safety PLC programs compliant with the IEC 61511 standard.
In addition, most of PLCs brands did not allow to generate
safety PLC programs with external tools, import them in
their programming environment and compile them as safety
programs. Very recently the Totally Integrated Automation
Portal (TIA portal) [8], the programming environment of
Siemens PLCs, opened the door for code generation of safety
PLC programs. Now source code files written in Ladder
Diagrams (LD) or Function Block Diagrams (FBD) with cer-
tain restrictions to be compatible with the LVL requirements,
can be imported and compiled as safety programs.

There are a very few references in the Functional Safety
standards about code generation. Since this is a relative new
feature in devices like PLCs, we believe that future releases
of the standards will address this specific topic with more
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details.
This paper proposes a method to automatically generate

ready-to-use Safety code, written in safety Ladder Diagram
(LD) language, compliant with the LVL requirements of the
IEC 61511. The LD programs are generated from Cause-
Effect-Matrices (CEM), a specification method also recom-
mended by IEC61511.

The paper is structured as follows: Section Requirements
for SIS AP design and development briefly introduces some
concepts related to Functional Safety, Model Based Design
and discusses the recommendations of the Functional Safety
standards about model based design and code generation.
Section From CEM to safety LD programs for Siemens TIA
Portal introduces the theoretical background of CEM and
mentions the full workflow used to generate LD code from
this formalism. Section CEM-to-LD code generator gives
more insights about the design of the tool developed to gen-
erate LD and its implementation. Section CERN case study
shows an case study to potentially use this tool in future
upgrades of the project. Finally, Section Conclusions and
Future developments outlines the conclusions of this work
and some future developments.

REQUIREMENTS FOR SIS AP DESIGN
AND DEVELOPMENT

Functional safety standards provide the guidelines to de-
velop a SIS that reduces the risks to tolerable levels. The
SIS comprises one or several Safety Instrumented Functions
(SIF) where each one targets a specific risk. The requried
risk reduction for each risk is determined as part as the risk
analysis and assessment. This is directly related to the Safety
Integrity Level (SIL), as shown in Table 1. SIL indicates
how critical the risk is and sets the requirements for each SIF.
This includes the requirements for the selection of hardware
devices, which relates to the calculation of PFDavg (average
Probability of Failure on Demand) or PFHavg (Probability of
Failure per Hour), the SIF architecture, the testing activities
and also the SIS AP.

Table 1: Relationship Between SIL, PFD, PFH and RRF

SIL              PFD          avg PFHavg RRF
4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8 10000 to 100000
3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7 1000 to 10000
2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6 100 to 1000
1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5 10 to 100

In this section of this paper, we will present some of the
most relevant requirements that are related to automatically
generate the SIS AP.

The IEC 61511-1 Clause 12 defines the requirements
for the SIS AP development. For example, it enforces the
usage of LVL or Fixed Program Languages (FPL) for the
SIS AP, excluding the usage of Full Variability Language
(FVL). If FVL is required from the SIS AP functionality,
the programmer must refer to IEC 61508-3 to extract the
relative requirements.

An important aspect of the SIS AP is that it shall be consis-
tent with and traceable back to the SRS (Safety Requirements
Specification) from the phase 3 of the safety life-cycle. The
AP should be modular and keep the complexity of each SIF
to the minimum. The functionality of the SIS AP should be
testable and there should be a one to one correspondence
between the hardware architecture and the AP architecture.

The IEC 61511-2 Annex B (Example of SIS logic solver
AP development using function block diagram) states that
the traditional text based approach of safety AP specification
is not efficient enough to handle the advanced, complex
safety requirements commonly found in SIF specifications.
The most efficient tool to address these challenges is Model-
based design (MBD).

The IEC 61511-2 Annex D (Example of how to get from
a piping and instrumentation diagram (P&ID) to application
program) shows an example where the Cause and Effect
(CEM) formalism was used to specify a SIF.

The IEC 61511 does not mention explicitly the use of code
generation tools for the SIS AP. However the IEC 61508-
3 Clause 7.4.4 (Requirements for support tools, including
programming languages), states that support tools like code
generation tools can be integrated into the safety program
development process, provided they enhance software in-
tegrity by diminishing the chances of introducing faults or
failing to detect them during the development phase.

In conclusion, PLC brands now allow automatic gener-
ation of safety PLC programs. In addition, the functional
safety standards recommend the usage a MBD for the design
of SIFs. They recommend to produce modular and traceable
software and accept the use of code generation tools if they
help to increase the reliability of the final SIS AP.

For these reasons, we believe that the future of SIS AP will
be linked to code generation tools that are able to generate
safety PLC programs from models like CEM, state machines
or logic diagrams. This is already the case in safety critical
industries like the aircraft industry [9]. These models can be
used in simulation and validated. Once the desired behaviour
is met, the SIS AP can be automatically generated from the
model and imported as safety PLC program.

FROM CEM TO SAFETY LD PROGRAMS
FOR SIEMENS TIA PORTAL

This section introduces the basic theoretical background
on the methods and programming languages that have been
used in this project.

Cause-Effect-Matrix Model
A Cause-Effect-Matrix is a formalism used to represent

unambiguously relations between causes and effects in a
system. It is used in stateless systems, where an output
only depends on some combination of the inputs at a given
time. In SIFs, normally what happens is that an actuator
or an alarm triggers when a logic combination of sensors
also triggers. In CEM, the rows represent the causes, which
are normally the sensors, the column represents the effects
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which are normally the actuators and the cells of the matrix
represent the relations between the two. An extensive expla-
nation of CEM is present in [10], but here we only present
the basic semantic of the logic expressions inside the cells.

• X: the cause, when active, triggers the effect (OR logic);
• N: the cause, when inactive, triggers the effect (OR

NOT logic);
• (N)A𝑖: the effect is triggered when all the causes with

the A𝑖 entry (where i = 1, 2, ...) are simultaneously
active, or inactive if the prefix N is present (AND logic);

• TON𝑥: the cause, if active for more than x seconds,
triggers effect (IEC61131-3 [6] TON logic);

• TOF𝑥: the cause, when active, triggers the effect and
the effect remains active for x seconds after the cause
becomes inactive (IEC61131-3 [6] TOF logic);

• Multiple entries in a single column, or separated by “,”
in a single cell, are combined with OR logic;

• The same effect may appear in multiple matrices, the re-
sulting expression for this effect is an OR logic between
the activations of each matrix.

As an example, Table 2 represents a CEM whose first column
encodes the logic requirements implemented in the Ladder
Diagram in Fig. 1.

Table 2: CEM Example

Effect Q01 Q02
Cause
I01 X
I02 TON(20) A1, A2
I03 NA1 A1
I04 A1 NA2

Ladder Programming
Ladder Diagrams (LD) is a graphical programming lan-

guage for PLCs that resembles circuit diagrams used to de-
sign relay logic hardware. Its inputs resemble electric con-
tacts and its outputs electric coils. It is particularly efficient
for coding stateless logic, mainly containing AND, OR and
negations. All details about LD can be found in IEC61131-
3 [6]. Safety LD is standard LD with several restrictions on
the datatypes and the variable operations to meet the func-
tional safety standards requirements for LVL. For example,
REAL datatypes (floating point number variables in PLC
programming) cannot be use in Safety PLC programs.

Using LD to represent the logic expressed in the first
column of Table 2, the result is shown in Fig. 1.

The one-to-one unambiguous relation between the first
column of the CEM and the LD makes very clear and simple
the translation rules. Figure 2 shows a simple example of
translation from a CEM to an LD program in TIA portal.
The LD code consists on a FUNCTION_BLOCK (FB_M1)
and its instance DATA_BLOCK (FB_M1_DB).

The difference between this example and a real-case sce-
nario is not in the complexity of the logic, but in the size
and quantity of CEM(s) to specify and consequently in the

Figure 1: Ladder Diagram specified by the first column of
the CEM shown in Table 2 represented in TIA Portal V17.

amount of LD to code. In a real control or safety system,
the LD programs can be very large and an engineer should
carefully read the specifications in the CEMs and slowly
translate them to LD, with high likelihood of introducing
coding mistake during this manual process. A well-tested
code generation tool would solve this problem.

Figure 2: Example of CEM to LD one-to-one bi-univocal
relation.

Full Workflow

At CERN, we have developed a tool to specify interlock
logics based on CEMs. The tool is called SISpec [10] and it
is still in the prototype phase. Using this tool, we can write
CEMs reducing the specification errors, thanks to syntax
and specification checks. Once the CEM is ready and vali-
dated, it can be exported into XML format. This file can be
imported into a Python tool called CEM-to-LD, which will
extract the information from the CEM into an intermediate
model to then translate it into LD for Siemens PLCs. The
output of the tool is a file in XML format that represents the
LD program in a textual format. This file can be imported
and compiled in TIA Portal (V16 or later), and then down-
loaded to a Siemens PLC, using the Siemens tool called
OpenessScripter. All this complexity is hidden to the engi-
neer, since once the specification file is created with SISpec,
the rest of the process can be fully automatized. The full
workflow is shown in Fig. 3.
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Figure 3: Full workflow from specification to generated code.

CEM-TO-LD CODE GENERATOR
The CEM-to-LD tool is fully written using Python 3.9 [11]

only using standard library tools. It is designed as a Python
package and can be run by command line on any computer
with Python 3.9 installed.

The idea behind this tool is to create a generic platform
where more specification languages and PLC programming
languages can be added. Starting from the program speci-
fication, instead of translating it directly into LD, an inter-
mediate model is generated. Then the intermediate model is
translated into LD. In this scalable approach, we can add new
specification methods that will be translated to the intermedi-
ate model and new PLC programming languages that can be
generated from the intermediate model. By employing an In-
termediate Model, it is possible to generate Function Block
Diagram (FBD) programs as well, only the translation from
IM to FBD is required. Or even generating LD or FBD pro-
grams for other PLC brands, since the textual representation
is different from the TIA portal one. Same applies for new
specification methods. The IM can be obtained from other
types of specification methodologies (e.g. state machines
or logic diagrams). Therefore the tool can be enlarged to
accept new specification methods. A representation of this
idea is shown in Fig. 4.

This is our vision for the future of the tool. Multiple spec-
ification methods and multiple programming languages in
a more generic tool: CEM-to-TIA. This enforces the archi-
tecture of the tool based on this intermediate model. The
advantage in terms of scalability of the Intermediate Model
is clearer with an example. Considering a case where 3
specification methods and 3 output PLC languages are ac-
cepted by the tool, the number of translations to implement
increases from 6 to 9 when not using the IM.

Users can be concerned about the introduction of errors in
the generated code. Even the standards states clearly that a
code generation tool should be added to the SIS development
workflow if it is proven that it can increase the reliability of
the final program. In safety critical industries like avionics
or aerospace, the use of certified code generation tools is
already common. An example is the ANSYS SCADE Suite 1

code generator. However, obtaining certification for our tool
is an extensive and expensive endeavor and, currently, there
are not plans to pursue it in the near future. Our approach
is shown in Fig. 5, where in addition to generating the
LD from CEM, also formal verification properties and test
cases are automatically generated from it. This allows us to
formally verify the generated PLC program against formal

1 ANSYS SCADE Suite webpage https://www.ansys.com/products/
embedded-software/ansys-scade-suite.

Figure 4: Conceptual representation of role of the Interme-
diate Model in the CEM_to_LD tool.

properties with PLCverif2 [12, 13] and run the test cases to
guarantee that the safety PLC program is compliant with the
logic expressed in the CEM. This minimizes the possibility
of the code generator introducing bugs.

CERN CASE STUDY
In its current status, CEM-to-TIA can be employed in any

scenario that utilizes CEM for program specification and LD
programs in TIA Portal V17 as programming environment
for PLCs. The tool was tested on one of the safety control
systems that protects the SM18 cluster F superconducting
magnet test bench facility at CERN. The PLC program for
this project was specified using CEMs. This specification
contains 350+ variables and 19 matrices. By applying this
tool, the safety PLC program was generated. 19 FUNC-
TIONS_BLOCKS and DATA_BLOCKS were automatically
generated. The generated PLC program will be deployed
in a future upgrade of the control and safety of the SM18
facility.

The current safety PLC program of the SM18 facility was
written manually by the PLC programmer for the former
programming environment for Siemens PLCs: SIMATIC
Step7. This was an enormous time consuming task. How-
ever, future upgrades will leverage the CEM-to-TIA tool to
expedite the PLC program development process and reduce
the occurrence of coding errors.

In addition, a large set of generated LD programs where
validated to test the tool and validate the correctness of the
translation.

2 PLCverif is available on https://gitlab.com/plcverif-oss.
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Figure 5: Workflow to prove the compliance between the generated LD and the CEM.

CONCLUSIONS AND FUTURE
DEVELOPMENTS

This paper presents a novel approach to generate Safety
Ladder Diagram programs for Siemens TIA portal projects,
using Cause-Effect-Matrices to define the program speci-
fication. The underlying logic behind this concept is that,
in safety-critical applications, the specifications provide a
comprehensive and unambiguous description of the software
to be created. Therefore, with the specification in hand, it
becomes possible to generate the code instead of having to
write it manually. This method dramatically reduces the
development time and the amount of errors, yet is compliant
with the IEC 61508 Standard.

The tool follows the guidelines of the Functional Safety
standards regarding the rules for LVL programs, Model
Based Design and usage of external tools for code genera-
tion.

The paper presents the background of Cause-Effect-
Matrices, Ladder Diagrams and the insides of the CEM-
to-LAD tool based on an intermediate model. The tool was
applied to a real CERN case study: the SM18 superconduct-
ing magnet test facility at CERN. The results were positive,
confirming the potential of code generation in safety appli-
cations.

The future development of the tool should mainly focus
on enlarging the input specification methods and output
PLC programming languages. The tool will be applied to
new safety projects at CERN and can also be applied in
other organizations and companies designing safety PLC
programs.
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