
TEST AUTOMATION FOR CONTROL SYSTEMS AT THE EUROPEAN
SPALLATION SOURCE

Karl Vestin, Fabio dos Santos Alves, Lars Johansson, Stefano Pavinato, Kaj Rosengren,
Marino Vojneski, European Spallation Source, Lund, Sweden

Abstract
This paper describes several control system test automa-

tion frameworks for the control systems at the European
Spallation Source (ESS), a cutting-edge research facility
that generates neutron beams for scientific experiments.
The control system is a crucial component of ESS, respon-
sible for regulating and monitoring the facility's complex
machinery, including a proton accelerator, target station,
and several neutron instruments.

The traditional approach to testing control systems
largely relies on manual testing, which is time-consuming
and error-prone. To enhance the testing process, several
different test automation frameworks have been developed
for various types of applications. Some of these frame-
works are integrated with the ESS control system, enabling
automated testing of new software releases and updates, as
well as regression testing of existing functionality.

The paper provides an overview of various automation
frameworks in use at ESS, including their architecture,
tools, and development techniques. It discusses the benefits
of the different frameworks, such as increased testing effi-
ciency, improved software quality, and reduced testing
costs. The paper concludes by outlining future develop-
ment directions.

INTRODUCTION
The control system for a large research facility, such as

the European Spallation Source (ESS), comprises thou-
sands of different subsystems. Each of these subsystems
has hundreds or even thousands of distinct configuration
items, and each plays a role in fulfilling a specific function
within the facility. The continued development and mainte-
nance of such a complex system-of-systems present signif-
icant challenges in terms of verification.

The control systems at ESS are constructed using local
control systems, typically based on Programmable Logic
Controllers (PLCs) or high-speed data acquisition systems
using Field Programmable Gate Arrays (FPGA)-based
boards slotted into Micro Telecommunications Computing
Architecture (MicroTCA) crates. All control systems are
integrated into the unified control system using Experi-
mental Physics and Industrial Control System (EPICS) In-
put Output Controllers (IOCs). All IOCs are based on reus-
able EPICS software modules distributed as part of the ESS
EPICS Environment (e3) [1].

Manually testing and re-testing every component of the
control system after each update is prohibitively time-con-
suming. To address this challenge, test automation is ap-
plied. Through the execution of test scripts in well-defined
test environments, we can efficiently test our systems for

regressions and faults before redeploying them after an up-
date.

At ESS, various approaches to test automation are em-
ployed, tailored to the type and application of each specific
control system. This paper will provide an overview of the
diverse technologies and techniques used, discuss the ra-
tionale behind their selection, and present ideas for the fu-
ture expansion of test automation.

EPICS MODULES
Most of the modules in the e3 environment are devel-

oped by the EPICS community and tested as part of the
release process. ESS has developed dedicated test scripts
to verify a subset of the modules. In most cases, the tests
require some level of hardware emulation.

As an example, let us examine the unit test scripts for the
Open Platform Communication Unified Architecture
(OPCUA) e3 module [2]. The EPICS module is developed
by the controls team at the International Thermonuclear
Experimental Reactor (ITER) and wrapped by the ESS e3
team for integration into e3. All the unit tests are declared
in a test script that is executed as a dedicated make target,
essentially a defined objective for the general purpose tool
for generation of executable from source code “make”.
This make target is executed by a process - a runner - au-
tomatically started by the ESS GitLab continuous integra-
tion function upon check-in of the changes. Figure 1 illus-
trates how the results are stored in GitLab and are available
for all historical builds.

Hardware emulation, in this case, is achieved using a
dedicated OPCUA server based on the open-source code
from the open62541 project [3]. The server is built as part
of building the make target. The server is then started as
part of the pytest test fixture in the test script to ensure the
test cases always have a server to connect and test against.

One interesting aspect of the OPCUA unit test is the uti-
lization of libfaketime [4], which is now installed by de-
fault on our test runner machines. Using this library, the
test fixture can start the OPCUA server using a different
("fake") system clock, thereby verifying that timestamping
is done correctly, as specified by the Time Stamp Event
(TSE) field in the record.

Before a new version of the module is released into the
production environment, the e3 team verifies that the pipe-
line runs cleanly, including any defined unit test scripts.

For the modules in the e3 environment, work is currently
underway to improve test coverage through automated test-
ing. The ambition is to have automated tests running as part
of the continuous integration process.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP053

Software

Software Best Practices

THPDP053

1435

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 1:Test for e3 module running in GitLab runner.

PLC DEVICE HANDLERS
Test automation for Programmable Logic Controllers

(PLC) is implemented using a standardized Python virtual
environment that packages the necessary tools for connect-
ing to and testing a PLC project. All tests are currently ex-
ecuted on physical PLCs. Experiments have been per-
formed to run tests on virtualized PLCs, but the results
have so far not been satisfactory.

The tests are developed using pytest [5]. The script uses
the Open Platform Communication Unified Architecture
(OPCUA) to emulate input and output signals for the PLC
and the EPICS Process Value Access (PVA) protocol to test
the software interface to the PLC. Automation engineers at
ESS use this environment to emulate inputs and outputs. In
this way, they can verify the behaviour of the PLC software
in a simple and repeatable fashion.

Currently, test automation is applied to the ESS device
handlers (reusable functional blocks used across many dif-
ferent process automation projects). For example, the test
script would run a comprehensive test suite for all the func-
tions of a device handler for a control valve. This means
that all process automation projects can rely on this retested
component to be stable and well-tested.

For verification of PLC-based control systems, further
investigation is ongoing into how simulated PLC hardware
could be used to allow testing to be integrated into a con-
tinuous integration workflow without reliance on physical
hardware. Additionally, modelling and testing against sim-
ulated processes to leverage the test methodology from
component testing to system testing are under discussion.

FIRMWARE VERIFICATION
FPGAs using Very High-Speed Integrated Circuit Pro-

gram (VHSIC) Hardware Description Language (VHDL)
are used in several systems at ESS, including but not lim-
ited to:

 The ESS Fast Beam Interlock System (FBIS).
 Data acquisition for beam diagnostics
 Neutron detectors
 Radio frequency (RF) systems

Data Acquisition Systems
Functions implemented by the firmware are verified us-

ing the Universal Verification Methodology (UVM) [6] test
benches in Questa Advanced Simulator [7]. These methods
generate constraint-randomized test vectors to allow effi-
cient testing at the function level.

Multi-unit and chip-level verification are carried out us-
ing hand-written functional test cases and scenarios devel-
oped in System Verilog [8] and simulated using Questa Ad-
vanced Simulator.

For system-level testing (in this case, testing the firm-
ware as it runs on an FPGA board), development is done in
Python and pytest and LowLevHW, a Python library for
handling hardware developed at ESS [9]. For example, em-
ulated Analog-to-Digital Converter (ADC) data can be in-
jected for filter chain testing. These tests also include per-
formance and stability test cases, and the test reports are
automatically uploaded to a common file share for tracea-
bility.

Ongoing development focuses on requirement-driven
firmware unit testing using cocotb [10] and/or pyuvm [11]-
based approaches. These methods offer an efficient and
standardized way to develop test benches using a scripting
language, Python, instead of Register Transfer Languages
(RTL) like Verilog.

The ultimate objective is to create a common and reusa-
ble framework and library for testing both at the firmware
and system levels for FPGA-based systems.

Fast Beam Interlock System
The ESS Fast Beam Interlock System (FBIS) was devel-

oped in collaboration with ZHAW [12]. A comprehensive
Hardware-In-the-Loop (HIL) test framework based on a
National Instruments test rig was provided. Work is ongo-
ing to build an updated and refactored test automation
framework based on an FPGA-based test rig and test
scripts in pytest to improve efficiency and maintainability.

The new test suite currently consists of approximately
1000 test cases, providing test coverage similar to that of
the originally provided test framework.

Verification results are stored in the ESS document man-
agement system and used as a reference in the system test
report. The verification reports are under version control
and are part of the ESS facility baseline.

Neutron Detectors
The ESS Readout Master Module was designed in col-

laboration with the Science and Technology Facilities

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP053

THPDP053

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1436

Software

Software Best Practices

Council (STFC) as a generic readout solution for various
neutron detector electronics that interface with data using
FPGAs. The primary function of the ESS Readout Master
is to simplify communication between the FPGAs and
other systems by serving as a point of aggregation. This
enables the establishment of a common and standardized
interface. The interfacing systems include the integrated
control system and timing provided by the Integrated Con-
trols Group (ICS), as well as event formation provided by
the ESS Data Management and Software Centre (DMSC).

The current development of the firmware is verified us-
ing the VUnit framework [13] through test benches in
Questa Advanced Simulator [7]. After function testing us-
ing the simulator, the next step is HIL verification. This in-
volves connecting the System Under Test (SUT) to an op-
erational model that mimics the real-world conditions in
which the ESS Readout Master will operate.

BEAM DIAGNOSTICS INTRUMENTS
Figure 2 outlines the procedure for verifying firmware

applied to the ESS Beam Current Monitor (BCM). After
the firmware has been verified, the system functionality is
tested on hardware in the lab. The device is controlled and
monitored with an EPICS IOC during the test.

Figure 2: Firmware verification flow.

Both test stimulus and results are managed through the
EPICS PVs, which provide a high degree of flexibility re-
garding tools for running the test scripts. Currently, we
have test automation projects primarily using WeTest [14]
and MATLAB [15].

The results from the tests are stored in a shared file stor-
age system to enable traceability of test results for any de-
ployed version of the instrument's firmware and software.

Looking ahead, our ambition is to use pytest for test
scripting due to its relative simplicity and to harmonize
with other test automation efforts at ESS.

APPLICATION SOFTWARE
The software team at ESS develops and maintains a suite

of application software, including EPICS channel finder,
naming service, cable database, controls configuration da-
tabase, online logbook, archiver appliance, and control sys-
tem studio. Many of these applications are developed in the
EPICS community, and ESS contributions are handled
through upstream pull requests, following the quality as-
surance guidelines of the upstream repositories. This often
includes test scripts for test automation.

For in-house development, such as the naming service,
and some community applications, such as channel finder,
automated unit tests are developed using JUnit 5, test con-
tainers [16], and Java code. The usage of containers for
managing dependencies is essential to ensure stable and re-
peatable test results.

The strategy for developing test automation focuses on
providing functional testing of central parts of the software.
As an example; there are rules for how users can set the
names in the naming service. Since many other tools de-
pend on these names to function correctly, it is important
that this functionality has substantial test coverage.

Integration test automation is employed at the applica-
tion level for functional verification. The tests run on the
representational state transfer application programming in-
terface for the application to ensure repeatable test results
without relying on user interface interactions. A test library
(ITUtil) with helper methods for integration testing has
been developed to facilitate testing.

An example of a simplified test sequence could include:
1. Create an application instance with an empty database
2. Verify that the application is running and accessible
3. Add data items, one by and one or in batches
4. Perform various actions (e.g. add, update, delete and

verify)
5. Verify that each action has the expected result
The results from automated testing are used to assess the

maturity and stability of the application before release into
the production environment.

Looking ahead, the ambition for test automation for ap-
plication software is to gradually expand test coverage and
investigate the possibility of integrating test automation
into the continuous integration environment.

CONCLUSION
Test automation is implemented across multiple disci-

plines at ESS, primarily to ensure that we can update and
maintain our systems without significant risks of causing
regressions in existing functionality or introducing new
faults.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP053

Software

Software Best Practices

THPDP053

1437

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Data generated by the tests is stored as required to ensure
that we can trace back to the test results if we ever encoun-
ter problems in the production environment.

The current trend is to expand testing to cover more ar-
eas, increase test coverage, and, simultaneously, harmoniz-
ing testing methodologies and tools across various do-
mains. The direction of technology choice is moving to-
wards standardizing on Python-based test automation for
most disciplines.

ACKNOWLEDGEMENTS
We would like to extend our gratitude to the team at Zur-

ich University of Applied Sciences (ZHAW) for their in-
valuable contributions to the development of the Fast
Beam Interlock FPGA system and the test rig.

We also wish to express our sincere thanks to Ralph
Lange and his team at the International Thermonuclear Ex-
perimental Reactor (ITER) for their exceptional work in
developing the EPICS OPCUA module and their ongoing
support.

Finally, we would like to express our gratitude to the
team at STFC for their invaluable contribution to the ESS
readout master module for neutron detectors.

REFERENCES
[1] ESS EPICS Environment,

https://gitlab.esss.lu.se/e3

[2] e3-opcua,
https://gitlab.esss.lu.se/e3/wrappers/e3-
opcua

[3] open6241, https://www.open62541.org
[4] libfaketime,

https://github.com/wolfcw/libfaketime
[5] pytest,

https://docs.pytest.org/en/7.4.x/index.html
[6] Universal Verification Methodology,

https://enQuesta .wikipedia.org/wiki/Univer-
sal_Verification_Methodology

[7] Questa advanced simulator,
https://eda.sw.siemens.com/en-
US/ic/questa/simulation/advanced-simulator/

[8] SystemVerilo,
https://en.wikipedia.org/wiki/SystemVerilog

[9] LowLevHW,
https://gitlab.esss.lu.se/fpga/lowlevhw

[10] cocotb, https://www.cocotb.org
[11] pyuvm, https://github.com/pyuvm/pyuvm
[12] WeTest, https://www.wetest.net
[15] MathWorks, https://se.mathworks.com
[16] Testcontainers, https://testcontainers.org

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP053

THPDP053

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1438

Software

Software Best Practices

