
IMPROVING USER EXPERIENCE AND PERFORMANCE IN SARDANA
AND TAURUS: A STATUS REPORT AND ROADMAP
Z. Reszela∗, J. Aguilar, M. Caixal, G. Cuni, R. Homs-Puron, E. Morales,

M. Navarro, J. Ramos, S. Rubio, O. Vallcorba, ALBA-CELLS, Barcelona, Spain
M. T. Núñez Pardo de Vera, DESY, Hamburg, Germany

B. Bertrand, J. Foresberg, MAX IV Laboratory, Lund, Sweden
M. Piekarski, SOLARIS, Krakow, Poland

D. Schick, Max Born Institute, Berlin, Germany

Abstract
The Sardana Suite is an open-source scientific SCADA so-

lution used in synchrotron radiation facilities such as ALBA,
DESY, MAX IV, and SOLARIS as well as in laser laborato-
ries such as the Max Born Institute. It is formed by Sardana
and Taurus - both mature projects, driven by a community
of users and developers for more than ten years. Sardana
provides a low-level interface to the hardware, middle-level
abstractions, and a sequence engine. Taurus is a library for
developing graphical user interfaces. The Sardana Suite uses
client-server architecture and is built on top of TANGO.

As a community, during the last few years, on the one
hand, we were focusing on improving user experience, es-
pecially in terms of reliability and performance, and on the
other hand renewing the dependency stack. The system is
now more stable, easier to debug and recover from a failure.
An important effort was put into profiling and improving
the performance of Taurus applications during startup. The
codebase has been migrated to Python 3 and the plotting wid-
gets were rewritten with pyqtgraph. In addition, we also
provide new features, like for example the long-awaited Sar-
dana configuration tools and format based on YAML which
is easy and intuitive to edit, browse, and track historical
changes.

Now we conclude this phase in the projects’ lifetimes and
are preparing for new challenging requirements in the area
of continuous scans like higher data throughput and more
complex synchronization configurations. Here we present
the status report and the future roadmap.

SARDANA SUITE OVERVIEW
Sardana is a Python-based scientific SCADA suite. Its

primary goal is to reduce the cost and time associated with
the design, development, and support of control and data
acquisition systems. The suite consists of two independent
projects: Taurus [1,2] and Sardana [3,4], and is built on top
of the TANGO control system [5].

Taurus is a framework designed for creating user inter-
faces, including GUIs and command-line interfaces, to inter-
act with scientific and industrial control systems, as well as
other relevant data sources. GUIs are developed using PyQt.

Sardana, on the other hand, is a framework focused on the
automation of experimental procedures and the control of
∗ zreszela@cells.es

laboratory equipment. It includes a powerful sequencer
known as MacroServer, which incorporates a versatile
scan and data storage mechanism. Additionally, it features
a Device Pool that defines generic interfaces for labora-
tory elements and implements the hardware access layer.
MacroServer as the client of Device Pool use Taurus
core to implement the client side part of the communication.
Spock which is based on IPython serves as a centralized
command-line interface application for Sardana users.

USER EXPERIENCE
During the last years we have significantly improved

the Sardana Suite user’s experience with the most relevant
changes listed below:

User Interfaces
Trends with Live and Archived Data The taurus_pyqt-

graph trend widget [6], introduced the archiving support in
the release 0.6. This development has fundamentally trans-
formed the way users access and interact with historical data
within the widget, offering valuable context for data analysis
on a single tool, while using HDB++ as a source for archived
information.

We achieved this by introducing two options:
• Loading Archived Data Once: Users can load historical

data once and visualize it based on the date time axis
they are exploring, this while the trend is continuously
updated with new data being added.

• Automatic Data Loading: This feature allows users to
navigate the date time axis retrieving and displaying
archived data relevant to their current view with no
need to click any button. This feature ensures that users
maintain an up-to-date and continuous visualization of
historical data as they explore different time frames.

Experiment Configuration The experiments can be
configured using client applications, either the expconf
GUI tool or directly through the Spock CLI. To ensure con-
sistency, any changes made in one of the clients must be
immediately reflected in all others.

The server notifies the clients about configuration changes
with TANGO attribute change events, then it is the client’s
choice on how to reflect the incoming changes. Initially, this
was solved by using pop-up dialogs that offered expconf
user options to accept or discard the changes. However,

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP050

THPDP050

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1420

General

Experiment Control

in order to eliminate the inconvenience of these pop-up di-
alogs, the auto-apply option was introduced. Nevertheless,
this option came with the drawback of exposing expconf
users to the risk of data loss if someone else modified the
configuration simultaneously from another client.

Finally, with the release of Sardana 3.3, the view and
edit modes were introduced for using the expconf tool.
Now, pop-up dialogs are only displayed when the tool is in
edit mode, significantly improving the user experience and
mitigating the risk of data loss.

Command Line Interfaces Multiple Taurus and Sar-
dana console scripts have been consolidated into one
script with sub-commands, similar to git. For instance,
instead of taurusform or taurusdemo, we now have
taurus form and taurus demo. Likewise, instead of
spock and macroexecutor, we now use sardana spock
and sardana macroexecutor. This change has resulted
in a clearer and more accessible central point of access to all
Sardana and Taurus-related tools. Additionally, this modifi-
cation has led to a less cluttered binary namespace and has
simplified packaging and documentation.

Furthermore, some of the Sardana macros have been mod-
ified to enhance user-friendliness. For instance, the macros
for limiting motor positions have been renamed to be more
self-descriptive. The motor position calibration macros have
been improved to include the ability to recalculate software
limits, and continuous scan macros now have an option to
skip the last scan acquisition, making it easier to compare
bidirectional scans.

Performance and Scalability
Taurus has performance issues affecting the startup time

of certain types of applications. To improve the startup
time performance we have created the Taurus Performance
Optimization (TPO) [7] project. In the project we created
baseline tests to find what code was responsible for slow
starts of the user interface:

• TaurusForm: A PyQt application composed of a single
TaurusForm populated with TaurusValue widgets (Tau-
rusValue is composed from four TaurusLabel widgets).

• TaurusLabel: Similar to a TaurusForm but with just
one TaurusLabel widget per attribute.

• Taurus core: Equivalent to as TaurusLabel case but
without PyQt layer.

• PyTango: Equivalent to Taurus core case but without
Taurus layer.

The baseline test revealed that the Taurus core has a sig-
nificant impact on startup performance. In the Taurus core
performance profiling we have uncovered areas for improve-
ment. First and most obvious were the creation of attributes
which generates a timeout, delaying startup by 6 seconds.
A bug in Taurus’s polling design can exacerbate this issue
by further 3 seconds for attributes without change events.
The second area of improvement was in how Taurus sub-
scribes to configuration events, and by changing this, some
extra time could be avoided for applications which do not

need them. Finally, TangoAuthority objects were created
multiple times, instead of reusing the same object between
attributes.

The last two issues are already solved. Fixing the multiple
creation of TangoAuthority objects reduced startup time
by ≈ 21 %. Moreover, by making an event subscription
optional, startup time may be reduced a further ≈ 29 %.

Debugging and Recovery
The next Sardana release, planned for the end of 2023,

will come with the expstatus widget, an intuitive and com-
prehensive tool designed to provide real-time insights into
the status of elements participating in an experiment. It
proves particularly valuable in cases where a macro becomes
unresponsive, as it offers immediate diagnostic feedback,
pinpointing the issues and the elements affected.

Moreover, it not only serves as an information conduit
but also facilitates user interaction with the system. In its
initial phase, it enables the user to interrupt a macro through
the stop and abort functionalities, as well as the subsequent
release of associated elements. In a following phase, the
widget allows the users to address elements that may be in
a status other than Ready (e.g. Fault) by recovering them
using the reconfig functionality.

Reliability
Sardana and Taurus have significantly improved their relia-

bility thanks to enhancements in the TANGO control system
framework. Developers from all three projects collaborate
closely. On one side, Sardana and Taurus developers provide
detailed issue reports and assist with testing, while on the
other side, TANGO developers contribute enhancements
and fixes. The most notable issues that were recently solved
include: (1) Subscribing and unsubscribing from events
in concurrent programming scenarios and Python Garbage
Collector hooks. (2) Device restarting using the admin de-
vice DevRestart() command, which is used in Sardana’s
reconfig functionality. (3) Device server init hook, which
is necessary when using a single Sardana server architec-
ture. In the future, there are plans to implement dynamic
attributes at the device level in TANGO, which are essential
for the device Pool.

DOCUMENTATION
Sardana documentation has recently undergone signifi-

cant improvements. The user documentation now includes
a “What’s New?” section, which describes the new features
introduced in each release in a user-friendly language. It
also provides links to more detailed chapters in the documen-
tation. Additionally, we have started incorporating video
demos into the documentation to offer more user-friendly
explanations of the new enhancements.

On the other hand, the developer documentation has been
expanded to include a detailed overview of the system archi-
tecture. This is aimed at attracting new contributors to the
project.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP050

General

Experiment Control

THPDP050

1421

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

CONFIGURATION
The standard way to configure Sardana is “interactive”,

using the Spock CLI and a set of configuration macros. The
system is built up incrementally, by adding controllers and
elements and tweaking settings. While this is intuitive, it
has some drawbacks. Large systems are hard to manage
this way. Things tend to stay around even when they are
not needed, because they are not trivial to add back later.
Furthermore, there is no general way to find out why some-
thing was added, when or by whom. It’s hard to get the “full
picture”. These factors contribute to a tendency for Sardana
systems to become “messy” with time.

In release 3.4, we have introduced a new feature - the
“config tool”. It is inspired by tools like Ansible, which
define an entire configuration in a “declarative” way. The
config tool is centered around a YAML file format which
describes an entire Sardana system. The format is designed
to be human read/writable, easy to generate programmaticaly
and friendly to version control (e.g. git). The tool is intended
to coexist with the interactive way of configuration.

The tool can set up a new Sardana system from such a
YAML file, as well as creating a file from an existing system.
A subsequent manual change in the Sardana system can
be incorporated into the file without loss of comments or
ordering, and conversely an update to the file can be applied
to the system, without recreating it from scratch. These
features together allow “round-tripping” the configuration
between file and control system. The tool can also show
the difference between a system and a config file. Finally, it
can check a config file for syntax and logic errors. All these
operations are visualized on the Fig. 1.

Figure 1: Sardana CLI configuration tools.

Two previous releases of Sardana brought two long-
awaited improvements. Since release 3.2, the “interactive”
method of deleting Device Pool elements has been protected,
ensuring that an element cannot be deleted if another ele-
ment depends on it. This ensures that the system always
maintains a coherent state and starts correctly.

Both Taurus and Sardana provide global configuration op-
tions called “custom settings”. Previously, the only way to
change these configurations was by modifying the installed
files (requiring write access to the installation directory).
Taurus release 5.0 and Sardana release 3.3 introduced the

configuration of “custom settings” using INI files. These INI
files can be created at either the user-level or system-level,
eliminating the need for write access to the installation direc-
tory. Additionally, this approach ensures that customizations
are not lost during reinstallation.

DEVELOPERS EXPERIENCE
During the last years we have also significantly improved

the Sardana Suite developer experience. Below you can find
the most relevant changes:

Programming Interface
Taurus Mutlimodel Creation of a custom Taurus wid-

get requires implementing a class that inherits from the
TaurusBaseComponent. TaurusBaseComponent imple-
ments a model API (setModel(), getModelObj(), ...).
Initially, this API allowed Taurus objects to be associated
with a single TaurusModel object to act as their data source.
The assumption of a single model worked for most cases,
but it was too limited in the following two typical use cases:

• “model container” - refers to widgets/objects that can
display an arbitrary number of models.

• “model composer” - differs from the containers in that
it require a well-defined set of models, each providing
the data for a specific aspect required by the widget.

As part of the TEP20 [8] the single model API was extended
to support the above two use cases. The approach consist
of supporting multi-models by assigning a “key” to each
model, replacing the current attributes that imply a single
model (e.g., .modelObj) with dictionaries that map those
keys to the corresponding values, and adding an optional key
keyword argument to the methods that access those attributes
(e.g., setModel()).

Improved Trigger/Gate Controller interface To sup-
port highly customizable synchronization devices that enable
the selection of input signals through configuration, the mul-
tiplexor mode has been adde to the Trigger/Gate Controller
API. To further simplify Trigger/Gate controller develop-
ment, the SynchOne() method now accepts configuration
in the position domain using dial position units instead of
user position units.

Type Annotations
Sardana is a large Python codebase, comprising over

100000 lines. It has been migrated from Python 2 to 3
as detailed below, but this conversion did not make further
use of new features available in Python 3. Recently some
effort has been made to add type hints.

Type hints are a way to add static typing to Python code.
As Python is dynamically typed, the type hints are not used
at runtime, but can be checked for consistency by tools such
as mypy, and inspected by IDEs. Furthermore they provide
documentation. More information can be found in PEP
484 [9].

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP050

THPDP050

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1422

General

Experiment Control

The approach for the initial conversion was to make use
of the existing type information already encoded in “doc-
strings”, documentation covering function argument types.
Docstrings is a more informal way of type hinting, describ-
ing type information in text format. It has been used by the
documentation generation system to build human readable
API docs, and as such it was not very consistent. How-
ever with the help of some automatic tools (doc484 and
com2ann) plus application of sed and some manual work,
it was possible to do the conversion in a few days. This
provided type hinting for over 500 functions. While less
than 10 % of the total number, it covers much of the core
functionality.

Type hinting can be quite useful even if it doesn’t cover
the entire codebase. The initial goal is to be able to run static
checks of the type consistency of major parts, and to start
using type hinting during development of new code.

Testing and Continuous Integration
In Sardana 3.4 core pytest fixtures have been intro-

duced, which allow easier, test-driven development of con-
troller plugins. We identified pytest as the most complete
and widespread python testing framework which provides
“pythonic” and modular way of developing tests [10]. One
can use the most common pool elements fixtures directly
in tests (even without importing them as they are installed
as pytest plugins) and eventually customize them using
markers. An alterntaive is to create your own fixtures using
the factory as fixture pattern.

One all-in-one docker image based on Debian 9 was
used for CI testing. Supervisor was starting mysql, the pre-
populated TANGO Databaseds as well as Sardana Pool
and MacroServer. This image was rather large (3.6GB)
and only one version of Python was tested (3.5). Thanks to
some refactoring in the tests and the introduction of pytest
fixtures to populate the database and start servers, testing
locally or in CI became much easier: standalone mysql and
TANGO Database docker images can be used. Those are
started using GitLab services in CI and can be run locally
using docker compose.

Those changes made creating new images to test Sar-
dana more straightforward. They only need to include Sar-
dana dependencies and we rely on conda-forge to install
them. From one Dockerfile, we can create images based
on mambaorg/micromamba [11] for Python 3.7 to 3.11.
Adding a new Python version is simple. micromamba helps
keeping the image smaller as it has no dependencies and
avoids us having to use a two steps build. Those images are
created in the sardana-docker [12] repository. Any change
will trigger a downstream pipeline in the Sardana repository
so we can ensure the new image isn’t broken before releasing
it.

To ensure the cleanliness and quality of Taurus code and
to avoid the introduction of non-standardized code, two tools
are utilized to aid and automate this process as part of the
Taurus CI pipeline: Black and Flake8. Black ensures
that the code adheres to the recommended PEP 8 formatting

guidelines and automatically makes modifications to achieve
this. Flake8 not only checks the PEP 8 compliance but
also highlights programming errors and assesses cyclomatic
complexity, thus preventing the maintenance of low-quality
code. Sardana will follow this recommendation and will
incorporate these tools in the same manner as Taurus has
done in the past.

Packaging
As seen previously, Sardana 3.4 introduced a new

command line tool: sardana config. This subcom-
mand isn’t available by default after installing Sardana
with pip. It was added to the PyPI package as an
extra. Use pip install sardana[config] to in-
stall the optional dependencies needed. In Sardana
3.4.1, new extras were added: spock, qt and all.
pip install sardana will install pytango but not
itango anymore. Use sardana[spock] for that, which
is equivalent to the sardana package from before 3.4.
On conda-forge the Sardana package was also splitted in
several subpackages: sardana-core, sardana-qt, and
sardana-config. sardana is now a metapackage that
will install everything (since 3.4). Those changes give more
freedom to the users to install only what they need.

MAINTENANCE
Python 3

Due to the outdated software stack at ALBA [13], the
Sardana and Taurus codebase had to remain compatible with
older components like Python 2.6, TANGO 7, PyQt4, and so
on for an extended duration. Even though the Sardana and
Taurus community was well aware of Python 2 reaching its
End of Life (EoL), the migration of the codebase to Python 3
consistently faced delays due to a preference for prioritizing
other development efforts.

We first started putting efforts to adapt Taurus to Python 3,
at the same time maintaining support to Python 2, using the
future. This was achieved in Taurus release 4.5. It’s impor-
tant to note that Sardana, unlike the Taurus project, serves
as a final application rather than a library. Consequently, it
adopted a distinct migration strategy. The Sardana codebase
underwent a transition to Python 3 without simultaneous
support for Python 2 in its release 3.0.

At the time of writing of this paper all Sardana systems
in all institutes of the community are already using Sardana
3.0 or higher. In case of Taurus there are still applications in
different institutes using Taurus with Python 2, even thought
the Taurus versions higher than 5.0, released at the end
of 2021, removed Python 2 support after cleaning all the
future module usage.

Migration of Taurus Plotting Widgets From
PyQwt5 to Pyqtgraph

Originally Taurus implemented its plotting widgets,
TaurusTrend and TaurusPlot, using PyQwt5. PyQwt5
has been unmaintained for a long time and not supported

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP050

General

Experiment Control

THPDP050

1423

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

in most modern Linux distros and is not compatible with
PyQt5 and Python3. As part of TEP17 [14] these widget
were reimplemented using pyqtgraph library which is very
efficient and offers a rich set of tools out of the box. The
implementation strategy changed with respect to the pre-
vious one. First, the set of features added on top of the
standard pyqtgraph widget are implemented as a composi-
tion of “tools” with the minimal interdependency between
them, instead of the previous approach which included all
the functionalities in one class. Second, the plotting widgets
are maintained as a separate project, taurus_pyqtgraph, and
are smootly integrated with Taurus by means of plugins. The
scope of TEP17 covered only a basic subset of features that
were supported in old widgets. The rest of functionalities,
like statistics calculation, inspector mode or the possibility
to change the curve titles, are being gradually added.

COMMUNITY
The Sardana community continues to thrive, with several

active developers that coordinate their efforts through regular
follow-up meetings. Some engaging events have played a
crucial role in sustaining interest and involvement within
the community. One of those is the Sardana Bug Squashing
Party, which serves as a platform for introducing newcomers
to the project while collaboratively fixing bugs.

Conversely, the Taurus community faced a period of re-
duced activity since its main developer left ALBA. In recent
months, there has been a resurgence of activity, with several
dedicated developers investing their time into the project.
To foster this renewed engagement, the community has es-
tablished regular follow-up meetings and initiated various
events, such as a Taurus Workshop held in ESRF or a possi-
ble future Taurus Bug Squashing Party. These efforts reflect
a renewed commitment to the ongoing development and
growth of the Taurus project.

ROADMAP
The future needs of the Sardana community in the short

and medium terms were discussed during a recent work-
shop held at SOLARIS [15]. The following actions were
identified:

• Sardana Configuration Tool: Include MacroServer
environment in the file format, support for multiple files
and improve usage workflow.

• Continuous Scans: (1) Add multiple synchronization
descriptions to deal with: passive elements e.g. shutter,
sample environment, or as fast as possible acquisitions
with elements reporting at different frequencies, (2)
include a configuration tool for main-secondary rela-
tions between triggering elements, (3) publication of
data to an in-memory database to decouple saving and
reconstruction,

• Macro API: Redesign for a more flexible generation
of custom scans.

• Documentation: Reorganize documentation to make
it easier to follow and provide tutorials for users.

• Reliability improvements: Set user defined actions as
scan recovery strategies. Address minor issues such as
emergency brake and element states consistency.

The Taurus roadmap presents as following: (1) finish
the performance optimization project; (2) ensure smooth
adaptation of Taurus by the ESRF accelerators group; (3)
ensure compatibility with PyQt6.

CONCLUSION
The Sardana Suite is a mature and production-ready solu-

tion for building SCADA applications in a scientific environ-
ment. Maintaining this software suite, which involves updat-
ing it with evolving dependencies, administering projects,
and managing packaging pipelines, requires a significant
amount of resources. Simultaneously, the continuous de-
mand for more efficient and flexible software, which is com-
mon in the scientific environment, motivates us to continu-
ally enhance the user and developer experience while adding
new features to Sardana and Taurus.

Thanks to its modularity, which is a notable feature of
the Sardana Suite, adapting just a portion of it is as straight-
forward as adapting the entire suite. Recent decisions by
the ESRF Accelerator Controls Group to adopt Taurus and
the Max Born Institute in Berlin to adopt Sardana seem to
confirm this.

Every software project faces the challenge of sustaining
itself over time and adapting to evolving technologies. The
strategy embraced by the Sardana Suite community is to
foster collaboration, leverage our collective expertise, and
share it with others.

ACKNOWLEDGEMENTS
We would like to thank the Taurus, Sardana and TANGO

community members and, especially, to: F. Becheri, J.
Gabadinho, A. Lopez (on leave), J. Moldes, A. Olle, S. Puso,
C. Ramirez, X. Serra, S. Wohl (ALBA), J. Garrevoet, J.
Kotański, T. Kraft, (DESY), G. Strangolino (Elettra), A.
Hoffstadt (ESO), R. Bourtembourg, N. Leclercq (ESRF), M.
Schneider (Max Born Institute, Berlin), A. Amhan (on leave),
Á. Freitas, V. Hardion, A. Joubert, Y. Li, M. Lindberg, V.
Silva (MAXIV), M. Celery, J. Kowalczyk, D. Trojanowska
(MAX IV/S2Innovation), and M. Fałowski, M. Floras, A.
Pytel, A. Switała, W. Wantuch, I. Zadworny, W. Zaręba (SO-
LARIS), Michał L. (on leave) (TANGO/S2Innovation) for
their contributions to this work.

REFERENCES
[1] Taurus, https://taurus-scada.org/
[2] C. Pascual-Izarra et al., “Effortless Creation of Control &

Data Acquisition Graphical User Interfaces with Taurus”,
in Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015,
pp. 1138–1142.
doi:10.18429/JACoW-ICALEPCS2015-THHC3O03

[3] Sardana, https://sardana-controls.org/
[4] T. M. Coutinho et al., “Sardana: The Software for

Building SCADAS in Scientific Environments”, in Proc.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP050

THPDP050

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1424

General

Experiment Control

ICALEPCS’11, Grenoble, France, Oct. 2011, paper
WEAAUST01, pp. 607–609.

[5] Tango, https://tango-controls.org
[6] taurus_pyqtgraph, https://gitlab.com/taurus-org/
taurus_pyqtgraph

[7] Taurus Performance Optimization repository,
https://gitlab.com/taurus-org/TPO

[8] Taurus Enhancement Proposal 20,
http://www.taurus-scada.org/tep/?TEP20.md

[9] PEP 484 – Type Hints, https://peps.python.org/pep-
0484/

[10] pytest project,
https://github.com/pytest-dev/pytest

[11] Micromamba, https://mamba.readthedocs.io/

[12] Docker images to test Sardana, https://gitlab.com/
sardana-org/sardana-docker

[13] G. Cuní et al., “ALBA Controls System Software Stack Up-
grade”, in Proc. ICALEPCS’21, Shanghai, China, Oct. 2021,
pp. 222–229.
doi:10.18429/JACoW-ICALEPCS2021-MOPV037

[14] Taurus Enhancement Proposal 17, http://www.taurus-
scada.org/tep/?TEP17.md

[15] Continuous Scans Workshop, 20th-21st September 2023, SO-
LARIS. https://indico.solaris.edu.pl/event/5/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP050

General

Experiment Control

THPDP050

1425

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

