
Voltumna Linux: A CUSTOM DISTRIBUTION
FOR (EMBEDDED) SYSTEMS

L. Pivetta∗, A. I. Bogani, G. Scalamera, Elettra Sincrotrone Trieste, Trieste, Italy

Abstract
In the last years a thorough approach has been adopted

to address the ageing and the variability of control sys-
tem platforms at Elettra Sincrotrone Trieste. The second
generation of an in-house built operating system, named
Voltumna Linux, which is based on an immutable image ap-
proach, is now ready for production, supporting a number of
commercial-off-the-shelf embedded systems. Moreover, the
same approach is perfectly suitable for rack-mount servers,
with large memory support, that often require the inclusion
of third party or closed source packages. Being entirely
based on Git for revision control, Voltumna Linux brings
in a number of advantages, such as reproducibility of the
product, ease of upgrading or downgrading complete sys-
tems, centralised management and deployment of the user
software to name a few.

INTRODUCTION
In recent years the number of front-end machines

used within Elettra control systems increased considerably.
Legacy systems, such as VME single board computers
based on MC680x0 and PowerPC microprocessors, were
joined by x86 systems in standard 19-inch form factor, like
rack-mount servers, and smaller form factor such as NUC,
UPBoard, Jetway and MinnowBoard. Moreover, also em-
bedded boards based on ARM microprocessors, such as the
Beaglebone, and system-on-chip boards based on FPGA, e.g.
De10-Nano, Sockit, Dinet and Arria10 have been adopted.

At Elettra, control systems are mostly based on
GNU/Linux distributions, introduced over the years, many
times featuring hard real-time extensions such as RTAI [1]
or Xenomai [2]. Keeping the same approach for new plat-
forms, over the time, would lead to an even more heteroge-
neous install base, with additional GNU/Linux distributions
or versions. Different subsystems make the administration
difficult; typical examples are the init-manager, available
in SystemV, Upstart or systemd flavours, or the network
management stack that can be based on systemd-networkd,
NetworkManager etc. Many versions of system libraries
would make it difficult to develop the same application on
different targets, restricting the replacement of a system with
a new one based on a different architecture.

Moreover, together with the new platforms, existing sys-
tems have to be maintained much longer than the typical
commercial distribution support, which several times is lim-
ited to security updates.

Novel technical solutions introduced in FERMI and the
prototypes developed for Elettra 2.0 required new control
platforms, specifically designed; GNU/Linux is the natural
∗ lorenzo.pivetta@elettra.eu

operating system choice, stated the very good know-how
available in house. A common solution to deal with op-
erating system fragmentation is to adopt automation and
configuration management tools, such as Ansible or Puppet.
Although valid, this approach does not cover all the require-
ments and cannot support all the legacy platforms in use.

REQUIREMENTS

Based on the experience integrating and supporting con-
trol system platforms and the use foreseen for the incoming
installations, the requirements to be satisfied by the operat-
ing system and software stack support for the new platforms
have been identified:

1. Allow the adoption of specific versions of system com-
ponents.

2. Allow to integrate third-party software, when source
code is available.

3. Provide multiple levels of customization (kernel,
drivers, libraries) by patching or revision control.

4. Optimise the operating system for each hardware.
5. Guarantee reproducibility, for both the operating sys-

tem and the BIOS/firmware of motherboard and
adapters.

6. Build, whenever possible, system configurations first.
7. Encourage software reuse making it available from ini-

tial releases.
8. Minimise platform dissimilarity, with special attention

to the operating system and low level software stack.
9. Provide separate images for development and produc-

tion systems.
10. Simplify working with new or low performance plat-

forms supporting cross-compiling.

Yocto / OpenEmbedded

The Yocto/OpenEmbedded Project [3] is an open source
collaboration that provides a flexible set of tools to create cus-
tom GNU/Linux based systems for embedded hardware, re-
gardless of the architecture. Established in 2010, it involves
many hardware manufacturers, including AMD, ARM, Intel,
Texas Instruments to name a few, open-source operating sys-
tem vendors and electronics companies.

Within the boards in use at Elettra, Yocto/OpenEmbedded
is supported by Terasic for the Sockit system-on-chip FPGA
based board and by Texas Instruments for the Beaglebone.

Therefore Yocto/OpenEmbedded was the natural, more
convenient, choice to base a new, custom, GNU/Linux dis-
tribution to be developed in-house.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP026

THPDP026

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1366

Software

Software Architecture & Technology Evolution



Voltumna Linux
The prototype, named Flop [4], demonstrated not be-

ing flexible enough for all the use cases, mostly because
the support for all platforms was based on a single distri-
bution. Voltumna [5], hence, is based on the concept of
meta-distribution, defining a base system that can be kept
as is or customised in additional steps. This is done prop-
erly aggregating several, pre-existing or custom built, layers.
Each layer defines a collection of text files, used to generate
or modify a software package or its configuration, named
recipes. As an example, the recipe written for a library is
listed below.

DESCRIPTION = "Library for Gaussian fitting"
LICENSE = "GPL-3.0-only"
LIC_FILES_CHKSUM = \

"file://LICENSE;md5=6f9f2aecf846d428f2b35d46d9c5ebe2"

DEPENDS:append = "gsl openblas"

SRC_URI = \
"https://gitlab.elettra.eu/cs/lib/libfit/-/archive/ \
${PV}/libfit-${PV}.tar.bz2"

SRC_URI[sha256sum] = \
"2b279235c1e1de02e10a650336bb6c2\
bab5d013c31f79380af57cfbd2c767924"

do_install() {
oe_runmake PREFIX=${D}${prefix} install

}

BBCLASSEXTEND = "nativesdk"

The recipe defines the dependencies and contains the
checksums of the specified license and source files as well
as the dependencies toward other tools or libraries.

Voltumna is made up of the layer meta-voltumna [6] that
includes, as git submodules, several layers maintained by
the Yocto/OpenEmbedded community:

• meta-96boards: BSP for some ARM machines, used
mainly for automatic resize of the main storage at first
boot.

• meta-amd: BSP for AMD machines and specific com-
pilation flags.

• meta-arm: BSP for all ARM systems, pulled in as a
dependency of other layers, also used for bare-metal
toolchains for ARM MCU.

• meta-clang: LLVM based C/C++ clang compiler.
• meta-dpdk: DPDK software framework.
• meta-intel: BSP for x86-based Intel machines and spe-

cific software stacks like microcode, OpenAPI and ITT.
• meta-intel-fpga: BSP for Intel SocFPGA machines, for-

merly Altera.
• meta-mingw: recipes to generate the SDK for Win-

dows.
• openembedded-core: core recipes.
• meta-openembedded: a large collection of recipes.
• meta-ti: BSP for Texas Instruments hardware.
Some layers built at Elettra, namely meta-tango and

meta-artesyn are also included. meta-artesyn provides up-
dates and board support package (BSP) code specific to
Elettra legacy platforms, sometimes available just for ob-
solete kernel versions. meta-tango provides Tango Control

System libraries. meta-voltumna also includes bitbake, a
make-like tool with a focus on distributions and packages
for embedded Linux cross compilation. It is worth noting
that meta-voltumna defines common components, delegat-
ing every specific platform support to additional layers.

Two additional layers are currently available,
meta-elettra [7], that includes customizations used at
Elettra, and meta-ess [8], that includes support specific
to the European Spallation Source (ESS). To finalise the
combinable layers there is then the layer defining each
specific GNU/Linux distribution. When needed, a recipe
belonging to a lower layer can be customised within a
distribution. Third-party applications, requiring a specific
kernel release, or some specific version of system libraries,
are typical use cases. Third-party applications can be
included in Voltumna in both source or binary format,
whether in-house software is always included in source
format, and compiled when generating the distribution
image. Moreover, Yocto/OpenEmbedded allows integrating
and saving any additional patch, possibly required by
a component, and automatically apply the patch when
generating the image; such functionality is useful whenever
more than one component has to be adapted because of a
unique requirement.

The following Voltumna distributions have been built at
date:

• ec: Equipment Controller (EC) [9],
• ccd: Charge-Coupled Device (CCD) [10],
• ebpm: Elettra Beam Position Monitor [11],
• imrf : Interlock Module for Radio Frequency [12],
• a2720: A2720 power supply [13].
This approach allowed to use the same hardware, a power

supply designed by Elettra, and integrate the support for
different facilities: the layer meta-elettra for use at Elettra
and the layer meta-ess for use at ESS. All the underlying
layers, which constitute the larger part of the system, are
exactly the same.

Voltumna Linux images, shown in Fig. 1, are available
for download from the organisation page [14].

Within Yocto/OpenEmbedded each platform is repre-
sented by the MACHINE file abstraction. Voltumna defines
its own MACHINE file for each specific target; this allows,
for instance, to build the same distribution for different plat-
forms. As visible in Fig. 1, the ec distribution [9] is available
for three different boards made by Artesyn, five different
boards made by BeagleBoard.org and a couple of additional
boards made by Jetway and Aaeon; the details are shown in
Table 1.

Furthermore, MACHINE file customisation allows to use
all the instruction set of a microprocessor, rather than a
common subset, and to include specific tools, such as tools
to update the BIOS/firmware of the motherboard as well as
of any pluggable adapter, together with the BIOS/firmware
updates as distributed by the manufacturer. Typical use cases
are network adapters (NIC), frame grabbers or serial line
adapters, that, under heavy load, often show buggy or erratic
behavior when the BIOS/firmware version is not up-to-date.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP026

Software

Software Architecture & Technology Evolution

THPDP026

1367

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: Voltumna Linux download page.

Table 1: Boards Supported by ec Distribution

Model Processor Memory Year
MVME5100 MPC7400 512 MB 1999
MVME7100 MPC8641D 2 GB 2008
MVME2500 P2010 1 GB 2011
BeagleBone White AM335x 256 MB 2011
BeagleBone Black AM335x 512 MB 2013
BeagleBone Green AM335x 512 MB 2015
BeagleBone Red AM335x 512 MB 2016
BeagleBone Blue AM335x 512 MB 2017
Jetway JBC311U93 N2930 4 GB 2014
Up-Xtreme 4305UE 4 GB 2019

Using custom MACHINE files enables pushing the op-
timisation to the limit, exploiting techniques like isolcpus,
cgroups, vfio and DPDK [15] for hardware partitioning to
reserve adapters and/or CPU cores for the execution of hard
real-time tasks [16].

Voltumna Linux distribution images are available in two
flavors, based on the intended use, and a software develop-
ment kit for each target.

The Software Runtime Environment (SRE) image is fi-
nalised for deployment on production hosts, where system
resilience and reproducibility are fundamental. With these
goals in mind, the SRE is built with essential components,
reduced to the minimum, and totally lacks any development
tool or documentation. Most of the SRE systems in pro-
duction at Elettra are deployed in diskless configuration

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP026

THPDP026

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1368

Software

Software Architecture & Technology Evolution



and network boot; shared filesystems are mounted read-only
from a NFS server. The root user is disabled and nominal
users can access the SRE systems by ssh key.

The Software Development Environment (SDE) image
provides a development environment, complete with all de-
velopment and debugging tools, built to run on the target
platform. Native target development is essential to develop
low-level system components, such as firmware1, device
drivers or kernel modules.

The Software Development Kit (SDK) is an installable
package, with the cross-compiler and the development en-
vironment proper to the target system. The Voltumna SDK
is available for guest hosts running Linux Ubuntu 18.04.
Beyond making the development environment available de-
tached from the hardware, the SDK enables working on high
performance desktop or server hosts, shortening build times
as compared to compiling on the target systems, that often
are low performance embedded systems.

All middleware, libraries and application software devel-
oped in-house for Elettra and FERMI control systems are
structured in such a way that can be built either on the target
platform or with the SDK without changes.

DEPLOYMENT
As already mentioned, at Elettra the typical deployment

for front-end computers is based on network boot and disk-
less operation. Each facility deserves at least one server for
network services, one for shared filesystem, based on NFS,
one for the Tango database, all deployed as virtual machines,
plus several physical and virtual hosts running the control
system devices.

Yocto/OpenEmbedded allowed to adapt software pack-
ages for the selected targets, enabling network boot where
needed and making each target boot process as similar as
possible. The result is that all targets share the same boot
process starting from initramfs step.

As noted, Voltumna Linux is based on immutable image
approach, regardless the target is booting over the network or
from local storage: the main system folder, where Voltumna
is stored, is mounted read-only. When in diskless operation,
target systems mount a private root filesystem in read-write
mode, but everything under /usr is shared, reducing storage
requirements on the NFS server as side benefit.

The Software Development Kits for Voltumna Linux dis-
tributions, supporting the target systems, have been inte-
grated into Elettra’s automatic build and installation system,

1 A real use-case at Elettra is the firmware for the Programmable Real-time
Unit Subsystem (PRUSS) used within the A2720 power-supply.

named INAU [17], and are available to the developers like
legacy development environments.

ACKNOWLEDGEMENTS
The authors would like to thank the Controls group for

the stimulating discussions.

REFERENCES
[1] RTAI, https://www.rtai.org/

[2] Xenomai, https://www.xenomai.org/

[3] Yocto Project, https://www.yoctoproject.org/

[4] L. Pivetta, A. I. Bogani, and R. Passuello, “Flop: Customiz-
ing Yocto Project for MVMExxxx PowerPC and Beagle-
Bone ARM”, in Proc. ICALEPCS’15, Melbourne, Australia,
Oct. 2015, pp. 958–961.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF112

[5] Voltumna Linux,
https://github.com/orgs/voltumna-linux/

[6] Layer package meta-voltumna, https://github.com/
voltumna-linux/meta-voltumna/

[7] Layer package meta-elettra, https://github.com/
voltumna-linux/meta-elettra/

[8] Layer package meta-ess,
https://github.com/voltumna-linux/meta-ess/

[9] Equipment Controller (EC),
https://github.com/voltumna-linux/ec

[10] Charge-Coupled Device (CCD),
https://github.com/voltumna-linux/ccd

[11] Elettra Beam Position Monitor,
https://github.com/voltumna-linux/ebpm

[12] Interlock Module for Radio Frequency,
https://github.com/voltumna-linux/imrf

[13] A2720 power supply,
https://github.com/voltumna-linux/a2720

[14] Voltumna Linux images,
https://voltumna-linux.github.io/

[15] Data Plane Development Kit, https://www.dpdk.org/

[16] G. Gaio, A. I. Bogani, M. Cautero, G. Scalamera, L. Anas-
tasio, “A new Real-Time Processing Platform for the Elettra
2.0 Storage Ring”, presented at the ICALEPCS’23, Cape
Town, South Africa, Oct. 2023, paper TUMBCMO24, this
conference.

[17] L. Pivetta and A.I. Bogani, “INAU: a custom build-and-
deploy tool based on Git”, in Proc. PCaPAC’22, Dolní-
Brez̆ani, Czech Republic, Oct. 2022, pp. 28–30.
doi:10.18429/JACoW-PCaPAC2022-THPP1

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THPDP026

Software

Software Architecture & Technology Evolution

THPDP026

1369

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


