©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO23

EVOLUTION OF CONTROL SYSTEM AND PLC INTEGRATION
AT THE EUROPEAN XFEL

A. Samadli*, T. Freyermuth, P. Gessler, G. Giovanetti, S. Hauf, D. Hickin, N. Mashayekh,
A. Silenzi, European XFEL, Schenefeld, Germany

Abstract

The Karabo software framework is a pluggable, dis-
tributed control system that offers rapid control feedback to
meet the complex requirements of the European X-ray Free
Electron Laser facility. Programmable Logic Controllers
(PLC) using Beckhoff technology are the main hardware
control interface system within the Karabo Control System.
The communication between Karabo and PLC currently uses
an in-house developed TCP/IP protocol using the same port
for operational-related communications and self-description
(the description of all available devices sent by PLC). While
this simplifies the interface, it creates a notable load on the
client and lacks certain features, such as a textual description
of each command, property names coherent with the rest of
the control system as well as state-awareness of available
commands and properties. To address these issues and to im-
prove user experience, the new implementation will provide
a comprehensive self-description, all delivered via a dedi-
cated TCP port and serialized in a JSON format. A Python
Asyncio implementation of the Karabo device responsible
for message decoding, dispatching to and from the PLC, and
establishing communication with relevant software devices
in Karabo incorporates lessons learned from prior design
decisions to support new updates and increase developer
productivity.

INTRODUCTION

As one of the world’s leading light sources, The Euro-
pean X-ray Free Electron Laser facility is opening up new
research opportunities for scientists and industrial users by
generating ultrashort X-ray flashes - 27 000 times per second
and with a peak brilliance of 5 x 1033 photons / s / mm? /
mrad? / 0.1% bandwidth [1]. Unique characteristics of the
facility enable researchers to study tiny structures, ultrafast
processes, extreme states, and small objects. Operating such
a complex facility without a robust control system is impos-
sible. Karabo [2] is the control system in use at European
XFEL: a pluggable, distributed control system that offers
rapid control feedback to meet the complex requirements
of the facility. The main interface with the existing hard-
ware infrastructure are Programmable Logic Controllers
(PLC), which use Beckhoff technology. The primary objec-
tive of this project is to enhance the communication between
Karabo and these Beckhoff PLCs [3].

#

ayaz.samadli @xfel.eu

THPDP023
1354

CURRENT COMMUNICATION BETWEEN
KARABO AND PLC

The communication between Karabo and PLC currently
uses an in-house developed protocol over TCP/IP using the
same port for operational-related communications and a self-
description of the PLC’s configuration and functionality (the
description of all devices available on the PLC) [4]. The self-
description and operational-related data (e.g., Value updates)
are in a custom binary format.

BeckhoffCom Device

The Human-Machine Interface relies on Karabo devices,
enabling users to observe and control the connected hard-
ware devices seamlessly. The BeckhoffCom device serves
as a transparent interface between Karabo devices and the
PLC, and is critical to this communication flow. It distributes
the updates from the PLC to the connected Karabo devices
and forwards the reconfigurations and commands from the
Karabo devices to the PLC. The PLC terminals are structured
within what we call soft devices, with each soft device being
associated with a corresponding Karabo device. Beckhof-
fCom’s core design is based on the Model-View-Presenter
(MVP) pattern, with the model managing PLC communi-
cation (including TCP communication with a view adapter,
view model, and TCP view) and the presenter enforcing
functionality based on functional requirements. The sys-
tem defines events and methods using abstracted interfaces,
which increases flexibility and testability.

Production Environment

In the existing production environment at EuXFEL, there
are approximately 15,000 Beckhoff devices spread across
ten different scientific endstations and beam line installa-
tions. Within this infrastructure, approximately 1,000,000
Beckhoff properties are exposed to the control system, con-
sisting of parameters such as temperature, velocity, flow, and
more. The following figures offer visual insights to provide
a clearer picture of the distribution of PLC devices through-
out the infrastructure. Figure 1 illustrates the allocation of
Beckhoff devices per instrument. The SASE2 (SA2) photon
tunnel installations stand out with roughly 2,000 PLC de-
vices, while Laser topics (LA) require fewer than 200 PLC
devices.

We examine the SQS (Small Quantum Systems) to obtain
a more detailed view of the distribution of various Beckhoff
devices within a specific instrument. Figure 2 shows that
the combination of Digital Input and Output devices makes
up about 40% of the total devices, with MC2 Beckhoff Mo-
tors and Analog Inputs contributing a combined total of

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Number of Beckhoff devices per instrument

Instruments
Q
B

T T T T T T
750 1000 1250 1500 1750 2000

Number of Beckhoff devices

6 25‘0 560
Figure 1: Number of Beckhoff devices per instrument in the
infrastructure.

about 30%. Valves, drive units, various types of motors,
and other components constitute the remaining 30% of the
total devices within the SQS instrument. The infrastructure
comprises 39 distinct Beckhoftf devices, most commonly uti-
lized as digital inputs/outputs, analog inputs/outputs, various
motor types, valves, pumps, encoders, gauges, and more.

Device distribution in SQS
Digital Input

Digital Output

MC?2 Beckhoff Motor

Others

MC2 Elmo Motor
Generic

Analog Input MC2 Base Motor

Pfeiffer TC Drive Unit

Valve

Figure 2: Distribution of the Beckhoff devices in the SQS
instrument.

Each device contains numerous device-specific properties,
including attributes like actual/target position, actual/target
velocity, software/hardware limits, interlocks, and various
others. These properties can either be read-only or reconfig-
urable, and each device may have anywhere from a few to
up to 200 distinct properties.

The total count of devices alone does not provide a com-
prehensive view of the data rate these devices produce within
the control system, as some devices may have many proper-
ties. Therefore, the total number of properties within a topic
can significantly increase if an instrument has numerous
such devices. A comparison between Figs. (1 and 3) shows
a semi-strong correlation between the number of devices
and the number of properties. For instance, despite rank-
ing fourth in the number of devices, the HED instrument
has the highest number of properties. This is attributed to

Software

Software Architecture & Technology Evolution

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-THPDPO23

Number of Beckhoff properties per instrument

Instruments
A
-l

T T T T T
40000 60000 80000 100000 120000

Number of Beckhoff properties

F T
0 20000

Figure 3: Total number of Beckhoff properties per instru-
ment in the infrastructure.

HED using approximately 450 Beckhoff MC2 motors, each
with approximately 160 parameters. It is important to note
that specific properties remain static or change infrequently,
while others may experience frequent updates, such as actual
position. To gain a comprehensive understanding, assessing
the average update rate for each topic is valuable, as this pro-
vides a more complete picture of the data dynamics across
various properties and parameters.

Average number of Updates Rate per Instrument during 30 days

By 85 8
S © o o o
RSNRE"
BRYURES
FRERTO

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

[
=]
=1

ST R R e M Rk

ﬁ;

o
@
=]

=
o
s}

u
=]

Ak "

Average number of Updates Rate per Instrument
N
I
=)

o

PR R S
Time
Figure 4: Average number of Beckhoff update rates per
instrument during 30 days.

Figure 4 illustrates that update rates typically range from
100 to 500 updates per second across various topics where
SQS takes the lead, except for the laser topics. On a regular
day, BeckhoffCom is expected to handle updates at a rate of
500 Hz. It is important to note that this number can increase
significantly, especially if the connection is restarted and a
BeckhoffCom receives the self-description of the PLC it is
connected to.

ISSUES IN THE CURRENT
IMPLEMENTATION

Although the BeckhoffCom implementation is generally
robust and does not encounter frequent issues in operation,

THPDP023
1355

©)

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

it has limitations that could be removed by the develop-
ment of new implementation. Maintenance often consumes
more time than development, so addressing the limitations
discussed in the following is a worthwhile endeavor with

> long-term benefits.

Limitation in Maintainability

European XFEL’s control system requirements are dy-
namic and complex, necessitating the integration of new
devices into the existing system and incorporating new fea-
tures as requested by scientists. Therefore, despite having a
robust system, recurrent maintenance is required to adapt to
evolving needs. Karabo offers three primary application pro-
gramming interfaces, with most devices implemented using
the Python middle layer API since 2019. The current im-
plementation of the Karabo-PLC interface is in C++, which
contrasts the growing Python adoption within the group. A
Python implementation of the PLC integration in Karabo
could leverage the growing Python expertise throughout the
group and facility. The existing C++ code is dense and
has a multilevel model-view-presenter design, making main-
tenance and adding new features tedious if they were not
foreseen in the original design. The MVP design results in
the necessity of modifying many classes, even for simple ad-
ditions. Compared to a more streamlined design, this could
be considered boilerplate. Debugging and bug detection are
made more challenging due to the time-consuming compi-
lation, potentially leading to inefficiencies in the develop-
ment process. The boost::asio [5] callbacks that are used in
C++ can be less straightforward and intuitive than Python’s
asyncio [6]. Additionally, the current self-description lacks
crucial aspects such as:

* Error Codes: Absence of error codes along with their
explanatory details.

 State Machine: The need for a comprehensive state
machine specifying allowable action progressions.

* Value Ranges and Options: Critical information such
as minimum and maximum value ranges and available
configuration options need to be included.

Finally, combining self-description (static) and opera-
tional communication data (dynamic) in a single protocol
and data stream makes the protocol complex. Sharing a port
and thus communication path for the self-description and
operational communication creates a significant transient
load when Karabo connects to a PLC, as the PLC transmits
the self-description data immediately upon connection initi-
ation, leading to increased traffic and potential operational
data exchange delays.

PYTHON ASYNCIO BASED
EVENT-DRIVEN PROPOSAL
Comprehensive Self-Description

The new implementation aims to enhance user interaction
by providing an extended self-description delivered through

THPDP023
1356

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO23

a web service in JSON format [7]. The self-description is
extended by the elements previously identified as missing: a
list of error codes with detailed descriptions, a comprehen-
sive state machine outlining permissible actions for a given
state, defined value ranges such as minimum and maximum
limits, and available configuration options. An example
of the properties and commands description is shown in
Tables 1 and 2, respectively.

Table 1: The Description of Properties in JSON Format

Name Value
key triggerDuration
alias 0x5011
displayedName Trigger Duration
description Duration of Trigger
dataType Intl6
unitSymbol SECOND
metricPrefixSymbol MILLI
allowedStates [ON, PROCESSING]
required AccessLevel EXPERT
accessMode RECONFIGURABLE

Table 2: The Description of Commands in JSON Format

Name Value
key sendAll
alias 0x80100000
displayedName Send All
description Send all available values
allowedStates [ON]
required AccessLevel OPERATOR

Architectural Overview and Key Modules in the
Implementation

The new implementation is deliberately organized into
two main sections: plc-binding and devices. Notably, plc-
binding is intentionally designed to be Karabo-agnostic,
meaning it does not depend on or import any Karabo-specific
components. This separation ensures that modifications to
Karabo or Karabo devices won’t require changes in plc-
bindings. We achieve this by using abstractions in our meth-
ods, ensuring that devices remain independent of specific
plc-binding implementations. Our design follows the princi-
ples of dependency inversion, aiming for a high degree of de-
coupling in our software architecture. This approach simpli-
fies future updates, such as new protocols or enhancements,
which can be primarily addressed within the plc-binding
module, reducing the need for extensive code modifications.

The implementation is designed with complete asyn-
chronicity in mind, leveraging Python’s asyncio package
to guarantee that data reading and writing operations do not
impact execution of other code segments. This approach en-
sures non-blocking execution throughout the system. More-

Software

Software Architecture & Technology Evolution

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISSN: 2226-0358

ISBN: 978-3-95450-238-7

PLC

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THPDPO23

8

ll%

BeckhoffDevice2 |

o X

—--->EN JE

BeckhoffDevice3 |

Figure 5: Karabo-agnostic Interface connects asynchronously to PLC/Web service, enabling communication between
BeckhoffCom (leading) and BeckhoffDevices (subordinate) via event-driven signals.

over, the system operates fully event-driven, where value
changes and updates are initiated in response to any alter-
ations in the data. These changes are seamlessly propagated
from plc-binding to devices using callback functions. This
asynchronous and event-driven behavior eliminates the need
for devices to wait on data or poll for data when no changes
are pending, thereby enhancing overall efficiency of the de-
sign. The plc-binding package comprises three core compo-
nents: interface, model, and protocol The interface handles
tasks such as establishing and terminating connections with
the PLC, as well as managing message communication and
parsing incoming PLC messages. A simple illustration of
the system design is depicted in Fig. 5. Within the protocol
module, nested data classes are used to encapsulate self-
descriptions, and encoding/decoding methods facilitate the
translation of Python native data types into binary represen-
tations and vice versa. The primary objective of the model
component is to maintain a comprehensive representation
of the PLC structure. This class is designed to be populated
with self-descriptions and maintains relationships between
device classes and their parameters.

The devices package consists of the bases, beckhoffCom,
devices, and factory modules. Within the bases module,
the pivotal classes beckhoffProperty and beckhoffSlot are
implemeted. These classes define the strategies for manag-
ing data updates from the hardware and ensure that changes
made in the Karabo device are correctly applied to the hard-
ware, thereby orchestrating seamless data synchronization.
The factory module implements the methods for creating
devices, properties, and commands. Within the devices mod-
ule, the foundational BeckhoffDevice class is defined, serving
as the base class for all Karabo Beckhoff devices, and spe-
cific Beckhoft devices are to be implemeted in this module.
The BeckhoffCom device is the arbiter device that makes
communication between hardware devices and Karabo de-
vices possible. Upon instantiation, it establishes a connec-
tion to the PLC via the interface module. Once a successful

Software

Software Architecture & Technology Evolution

connection is established, it retrieves the self-description
of available PLC devices and generates BeckhoffDevices
instances with properties and commands defined by the in-
terface. Subsequently, BeckhoffCom requests the current
configuration for each device and updates the devices when
updates occur. The implementation is designed with testa-
bility in mind, using PyTest [8] for both unit and integration
tests. The current test coverage is 92 percent.

OUTLOOK

The development process is still ongoing, The forthcom-
ing implementation is expected to be deployed in production
in 2025 during the long shutdown of the infrastructure.

REFERENCES

[1] M. Altarelli et al., “The European X-ray free-electron laser
facility in Hamburg”, Nucl. Instrum. Methods Sect. B, vol. 269,
no. 24, pp. 2845-2849, Dec. 2011.
doi:10.1016/j.nimb.2011.04.034

S. Hauf et al., “The Karabo distributed control system”, J.
Synchrotron Radiat., vol. 26, no. 5, pp. 1448-1461, 2019.
doi:10.1107/S1600577519006696

Beckhoff, https://www.beckhoff.com

N. Coppola, J. Tolkiehn, and C. Youngman, “Control Using
Beckhoff Distributed Rail Systems at the European XFEL”,
in Proc. ICALEPCS’13, San Francisco, CA, USA, Oct. 2013,
paper TUPPC046, pp. 669-672.

Boost::asio, https://www.boost.org/doc/libs/1_77_
0/doc/html /boost_asio.html

(2]

(3]
(4]

(5]

(6]

Python’s asyncio,
library/asyncio.html

https://docs.python.org/3/

[7]1 T. Freyermuth et al., “Progression Towards Adaptability in
the PLC Library at the EuXFEL”, in Proc. PCaPAC’22, Dolni
Brezany, Czech Republic, Oct. 2022, pp. 102-106.

doi:10.18429/JACoW-PCaPAC2022-FRO13

[8] Pytest, https://docs.pytest.org

THPDP023
1357

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

