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Abstract 
The SKA Project is a science mega-project whose mis-

sion is to build an astronomical observatory that comprises 
two large radio-telescopes: the SKA LOW Telescope, lo-
cated in the Inyarrimanha Ilgari Bundara, the CSIRO Mur-
chison Radio-astronomy Observatory in Western Australia, 
with the observing range 50 – 350 MHz, and the SKA MID 
Telescope, located in the Karoo Region, South Africa, with 
the observing range 350 MHz – 15 GHz.  The SKA Global 
Headquarters is in the Jodrell Bank Observatory, near Man-
chester, UK.   When completed, the SKA Telescopes will 
surpass existing radio-astronomical facilities not only in 
scientific criteria such as sensitivity, angular resolution, 
and survey speed, but also when it comes to the number of 
receptors and the range of the observing and processing 
modes.  The Observatory, and each of the Telescopes, will 
be delivered in stages, thus supporting incremental devel-
opment of the collecting area, signal, and data processing 
capacity, and the observing and processing modes.  Unlike 
the scientific capability, which in some cases may be deliv-
ered in the late releases, the control system is required from 
the very beginning to support integration and verifica-
tion.  Development of the control system to support the 
first delivery of the Telescopes (Array Assembly 0.5) is 
well under way.   This paper describes the SKA approach 
to the development of the Telescope Control System, and 
discusses opportunities and challenges resulting from the 
distributed development and staged approach to the Tele-
scope construction.  

INTRODUCTION 
The SKA Observatory [1] is an international organisa-

tion whose mandate is to build and operate two multi-pur-
pose radio telescope arrays. The SKA Low Frequency Tel-
escope array (in further text SKA LOW), located in the 
Murchison region, Western Australia, with the observing 
range 50 - 350 MHz, will consist of more than 131,072 log-
periodic antennas organised as 512 stations;  the maximum 
distance between two stations is 65 kilometres.  The SKA 
Mid Frequency Telescope array (in further text SKA MID), 
located in the Karoo region, South Africa, with the observ-
ing range 350 MHz - 15 GHz, will comprise 197 offset-
Gregorian dishes; the dishes are 15 metres in diameter, the 
maximum distance between two dishes is 150 kilome-
tres.  In both Telescope arrays, the receptors (stations in the 
SKA LOW and dishes in the SKA MID) are arranged in a 
dense core (with the diameter of ~1 km), and three spiral 
arms. 

Work on the construction, which officially started in 
2021, was preceded by the pre-construction activities, 
which ended with the successful completion of the Critical 
Design Review (CDR).  The CDR was a requirement for 

the transition to the construction phase. As a result, when 
the Project entered the construction phase, a comprehen-
sive set of documentation was available, including the re-
quirements and architecture documents, not only for the 
Observatory and for both Telescopes, but also for each ma-
jor sub-system, including the Telescope Control Sys-
tem [2, 3]. 

This paper provides an overview of the Telescopes and 
Telescope Control System, describes how the development 
team is organised, outlines the progress made so far, and 
discusses some of the challenges the development team en-
countered during the construction and the strategy to ad-
dress those challenges. 

TELESCOPE ARCHITECTURE 
Figure 1 shows the major subsystems, flow of the ob-

served data and flow of control. Figure 1 is an overview of 
an SKA Telescope; the receptors are different (Low Fre-
quency Aperture Array (LFAA) and MID array of dishes) 
while the rest of the subsystems are very similar in the SKA 
MID and KA LOW. 

The key Telescope subsystems that capture and process 
astronomical data are the receptors, Central Signal Proces-
sor and Science Data Processor.  The key Telescope sup-
port systems are Synchronisation and Timing (SAT), Con-
trol System (CS), Networks and Computing Platform 
where software is deployed.  The sub-system known as Ob-
servatory Science Operations (OSO) provides a set of tools 
for proposal submission and management, and for obser-
vation preparation, planning, scheduling, and execution.  

Equipment and software for each SKA Telescope is de-
ployed as follows:   
 The core of the array is located at a radio-quiet site in 

a desert (Karoo Region, SA and Murchison region, 
AU)  

 Receptors in the spiral arms are spread across a large 
area; some of the MID array dishes are located more 
than hundred kilometres from the core.   

 The Central Processing Facility (CPF) is located near 
the core of the array.   

 The Science Processing Centre (SPC, where Central 
Signal Processor and Science Data Processor are de-
ployed, is located in a major urban centre (Cape Town 
and Perth). 

 The Engineering Operations Centre (EOC) is located 
in a town relatively close to the Telescope sites (Car-
navon, SA and Geraldton, AU). 
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Given the distributed deployment, some of the monitor 
and control software must be deployed locally (close to the 
equipment), to provide monitor and control capability in 
the absence of connectivity with the Central Processing Fa-
cility, Engineering Operations Centre, and/or Science Pro-
cessing Centre. 

CONTROL SYSTEM REQUIREMENTS  
Physical distribution of equipment, described in the pre-

vious section, is one of the aspects to consider when de-
signing the Control System.  Other significant features of 
the Telescope design are implementation of various sub-
systems, and the number of components to be monitored 
and controlled.  For example, the Low array will consist of 
131,072 log-periodic antennas, organised as 512 sta-
tions.  Signal captured by each antenna is digitised and in-
puts from different antennas aligned in time before they 
can be used as input for beamforming.  Each Station is re-
quired to form up to 48 beams on the sky, each beam can 
be pointing to a different point in the sky.  Hundreds of 
software, firmware and hardware components are required 
to perform signal processing for 512 stations.  The Moni-
toring, Control and Calibration Subsystem (MCCS) for the 
Low Frequency Aperture Array (LFAA) will consist of 
hundreds of software components.  In the SKA MID Tele-
scope, the Correlator and Beamformer must be able to pro-
cess up to 5 GHz of bandwidth from each of 197 receptors; 
more than 800 boards, each equipped with a System on 
Chip (SoC), comprising ARM processor and FPGA, are 
needed to perform required signal processing.  These two 
examples illustrate the number of components to be moni-
tored and controlled.  Other Telescope subsystems are 
comparable in size and complexity, and in some cases even 
more demanding. 

The Telescope Control System role and requirements 
may be grouped as follows:  

 Requirements related to monitor and control of equip-
ment and software. 

 Requirements related to execution of observations. 
 Non-functional requirements.  
Summary of the Control System requirements related to 

equipment and software:  
 Monitoring - periodically check the status of equip-

ment and software, report status on request and 
change, report faults and errors, implement intelligent 
status   aggregation, i.e. ability to interpret impact of 
faults and errors on the Telescope availability.  

 Archiving - maintain historic record of the Telescope 
status.  Enable Operations to select the attributes to be 
archived periodically and/or on change.  Provide API 
and tools for access to the historic record.  

 Provide Application Programming Interface (API) that 
can be used to trigger state/mode changes and config-
uration changes.  Expose as attributes all information 
required to understand the state of the system, includ-
ing information required for debugging and trouble-
shooting.  

 Support for hardware / software / firmware updates.  
 Support for debugging, testing and maintenance. 
 Provide HMI for monitoring and control as described 

above.  
The requirements listed above apply at all the levels in 

the system hierarchy: Telescope, subsystems, and individ-
ual components. 
Summary of the Control System requirements related to 
observing:  
 Each telescope supports multiple observing modes - 

provide an API that can be used to configure a tele-
scope for the desired observing mode.  

 Point the receptors and beams; track sources (as per 
observation configuration).  

 Provide regular updates for pointing and delay track-
ing.  

Figure 1: SKA Observatory - key subsystems. 
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 Provide an API that can be used to start and stop ob-
servations (co-ordinated start/stop for pointing, cap-
ture and processing of the astronomical data, and gen-
eration of output products). 

 Provide an API that can be used to subdivide the array 
(both receivers and processing resources), and to oper-
ate each sub-array independently, in terms of pointing, 
observing band & mode, and start/stop of observa-
tions. (Subarraying is an architecturally significant re-
quirement which increases Control System complex-
ity.) 

 Provide API and HMI for monitoring observing re-
lated status per subarray (including the equipment used 
by the subarray).  

 Provide a forensic tool for understanding of the state 
and behaviour of the system. 

 Provide access to calibration correction parameters 
and algorithms.  

The key non-functional requirements for the Control 
System are:  
 Reliability - Ability to perform a required function un-

der stated conditions for a stated period of time.  Meas-
ured by: Mean time between failures.  Mean time to 
repair. 

 Resilience - Ability to function in the presence of er-
rors and failures. Ability to recover from errors and 
failures.  Containment (localization) of errors and fail-
ures. If some of the components fail, the rest of the tel-
escope should continue to function. 

Control System reliability and resilience have a direct 
impact on the Telescope availability; when the Control 
System is unreliable or not working the Telescope is not 
available.  

Other significant non-functional CS requirements are 
performance, testability, usability, scalability, extendibility, 
modifiability, and upgradability. 

CONTROL SYSTEM ARCHITECTURE  
Telescope architecture was defined early in the design 

process, some aspects of the Control System architecture 
were a logical consequence of the Product Breakdown 
Structure (PBS) and allocation of functionality.  General 
approach to Control System architecture is a layered archi-
tecture, where each subsystem, product and component is 
responsible to provide an interface that can be used to con-
figure and control the operating mode, as applicable for 
each entity, and to evaluate and understand the status and 
behaviour.  Layering is required to handle the system that 
consists of many diverse components.  Another feature of 
the CS design is to push the monitor and control related 
functionality and intelligence to the subsystems and com-
ponents; each sub-system and component then translates 
higher-level parameters in the detailed configuration.  

Other choices made early in the development include:  
 Fundamental SKA Software Standards [4]  define the 

preference for open-source software and Python as the 
programming language of choice.   

 Choice of TANGO Controls framework [5] as the base 
for the Control System implementation [2, 3]. 

 Control System Guidelines [2] define:  
o Hierarchical approach to Control System, identify 

the key components and outline flow of infor-
mation.  

o A standard set of states and mode indicators, the 
so-called SKA Control Model.  

o A standard approach for definition of the prod-
uct/component API.  

o Roles and responsibilities for individual compo-
nents.  

The Telescope Monitor and Control (TMC) subsystem 
which provides the overall Telescope control and monitor-
ing functions, will be deployed in the Central Processing 
Facility (CPF) near the array core (although some of the 
components may be deployed in the Science Processing 
Centre (SPC), details are still to be defined).  The Local 
Monitor and Control (LMC) for each sub-system will be 
deployed close to the subsystem it controls; the same ap-
plies for the smaller subsystems and individual compo-
nents.  The Dish LMC is deployed in the pedestal of each 
MID Dish.  The Monitor, Control and Calibration System 
(MCCS) for the Low Frequency Aperture Array (LFAA) is 
deployed in the Central Processing Facility, and the remote 
stations. 

Other technological choices made so far:  
 Software deployment - The Control System compo-

nents will be deployed on the Common Cluster of 
Servers.  Computing infrastructure is managed using 
COTS tools, not part of the Telescope Control System. 

 Technologies for the Common Software Service, in-
cluding virtualisation, have been selected. 

 TANGO Controls framework provides built-in sup-
port for logging; the SKA approach is to use TANGO 
API for setting logging levels, while the infrastructure 
for collection of logs, logging repository and access to 
the logging repository is provided by the Common 
Software Services.   

 TimescaleDB has been selected and deployed as the 
backend for the archiving.  

 Taranta, a browser-based tool, which is part of the 
TANGO Controls ecosystem, has been selected as a 
technology of choice for the CS provided User Inter-
faces (UIs).  

Choice of the Alarm Handling tools is still outstanding, 
the Elettra Alarm Handler and IC@MS by S2Innovations 
are being considered. 

DESIGN AND IMPLEMENTATION 
At the beginning of construction, a set of the SKA Tango 

Base Classes were developed that implements the common 
API and state machines defined in the CS Control Guide-
lines [3].  Most sub-systems use the SKA Tango Base Clas-
ses as the base for development, some have chosen to de-
velop their own implementation that provides the same 
functionality and API.  Main reasons for the development 
of the own implementation are:  
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 Development of most systems started in parallel, as a 
result, the quality of the initial versions of the base 
classes was not satisfactory.  The teams that were not 
willing to wait for implementation to stabilise devel-
oped their own implementation.   

 The concept of the base classes is somewhat contro-
versial, some of the team members believe that when 
a large number of components base their implementa-
tion of the same set of classes, the system is hard to 
evolve.  Evolution of interfaces is always hard and has 
to be synchronised; if a server changes API, the client 
must be modified to use the new API.  In practice, our 
system has shown that it is not necessary to upgrade 
all components at the same time.  Quite to the contrary, 
it is hard to motivate teams to keep pace with the im-
provements and upgrades.  At any time, the integrated 
Control System comprises components that use differ-
ent versions of the base classes.  However, this is not 
to say that our approach is perfect.  

During the development, the control model was refined, 
definition of components and commands improved.  The 
commands used to allocate resources and configure subar-
ray observing mode need to provide a rather large set of 
parameters; in Tango Controls framework a command can 
pass a single parameter.  In SKA, the Tango API is used, 
not only to control individual devices, but also to control 
the Telescope and large sub-systems; to avoid the hard 
limit on the number of parameters, some of the commands 
pass a JSON script as a parameter.   This allows for auto-
mated syntactic checks (against the JSON schema) and 
supports weak typing; both of these techniques are used to 
implement loose coupling of components [4]. 

As already mentioned, the SKA CS implements layering 
to handle the complex system that consists of many diverse 
components.   Passing commands & requests through 
many layers may result in a brittle system, if not carefully 
implemented, a single misbehaving component may dis-
rupt operations.   Each component must be implemented 
defensively (containment, ability to operate in presence of 
errors).  Implementation of asynchronous, non-blocking 
commands is described in “Asynchronous Execution of the 
TANGO Commands in the SKA Control System: An Alter-
native to the TANGO Asynch Device” [6].   

So far, at least a rudimentary implementation of the 
TMC and virtually all LMCs have been developed.  This 
includes the commands that control operational state and 
commands used to configure subarrays.  All components 
implement a standard set of state and mode indicators.  In-
tegration of the CS components both for the MID and LOW 
Telescopes is in progress, and that’s where the team en-
counters challenges (see the section on challenges for fur-
ther discussion).  

The logging repository and related infrastructure, as well 
as the Engineering Data Archive (EDA), which provides 
historical record (archiving), have been deployed in the 
System Integration Facilities (ITFs) and are available for 
use by the integration teams. 

Integration of the Control System components with the 
products delivered by the contractors has started, and this 

has accelerated pace of development, as the feedback from 
integration contributes to the backlogs of the development 
teams.  

The development is currently transition from the phase 
where the development was mostly driven by the software 
team priorities, to the phase where priorities for the soft-
ware development are mostly driven by the availability of 
the equipment and the system integration.  

This is an exciting time for the SKA Observatory and the 
Control System team. 

STAGED DELIVERY  
The SKA Telescopes will be developed, deployed, and 

integrated in several stages. The Control System must pro-
vide enough functionality to support integration and veri-
fication in each stage of development.  

The first milestone, known as Array Assembly 0.5 
(AA0.5), will be used to prove that the system can function 
as an interferometer; the functionality provided by AA0.5 
will not be sufficient to support scientific observa-
tions.  The AA0.5 version of the MID Telescope consists 
of 4 dishes, the Correlator and Beamformer, the PST En-
gine able to receive and record a single PST beam, and the 
SDP able to receive and store visibilities for an array of 4 
dishes, perform calibration, and other required pro-
cessing.   The AA0.5 version of the LOW Telescope will 
consist of 6 stations; other subsystems are required to pro-
vide the same functionality as for the MID Telescope.   

The Control System must provide the APIs and HMIs to 
enable integration commissioning teams to understand and 
evaluate the state of the system, visibility for the parame-
ters used in calibration, and ability to configure a subarray 
for the supported processing modes, start/stop observa-
tion, configure archiving and access the archived data and 
more.   In short, virtually all CS functionality has to be pro-
vided but for a small system.   So far only a subset of the 
functionality required for AA0.5 has been implemented, 
work on status aggregation and alarm reporting is still out-
standing.  

When it comes to non-functional requirements, in the 
early stages, resilience is extremely important; it is to ex-
pect that other components and sub-system will not be sta-
ble, the CS will have to detect and report issues, function 
in the presence of failures, and return to normal operations 
when the failed components recover.  In other words, the 
Control System must be able to contain failures and com-
pensate for deficiencies in other components.   

Testability and modifiability will be verified over time, 
as the system expands and evolves.  Some aspects of the 
Control System performance will be tested in early Array 
Assemblies; but most will be verified only when almost all 
equipment becomes available; the number of components 
to monitor and control, to a great extent, impacts the per-
formance.   In the same manner, scalability will be verified 
late in the project construction. 
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CHALLENGES 
Time Zones 

The software teams working on implementation of the 
Control System software are distributed over many time 
zones, from eastern Australia to western Canada, and espe-
cially for the teams in Australia and Canada, participation 
in the meetings and events is a challenge.  The teams are 
distributed, and the number of developers is growing, it is 
expensive and difficult to organise face-to-face meet-
ings.   The SKA team has been adapting to this situation 
from the beginning, and, so far, team cohesion remains 
strong. 

Evolution of Interfaces 
All subsystems are being developed in parallel, for the 

Control System that means that detailed requirements are 
not available, or, if defined in pre-construction, are not ap-
plicable anymore. As the Telescope subsystems and com-
ponents are designed and developed, the APIs get refined 
and modified.  This is to expect in an Agile development 
environment but can cause delays and rework. 

Rapid Growth 
The guidelines for implementation of the Control Sys-

tem were developed early in the development, and have 
been widely adopted, but, as the pace of the development 
accelerates and the number of teams and developers in-
creases, the tendency to diverge from the project standards 
seems to gain momentum.   This may seem counterintui-
tive, as refusal to adopt project standards usually increases 
the workload, but under the pressure to deliver the teams 
sometimes opt for short term gains (or perceived gains). 

Entropy 
Given the size of the project and diversity of components 

and subsystems, maintaining the documentation up to date 
is a challenge.   Documents developed in pre-construction 
define requirements, architecture, and interfaces for all 
sub-systems, they are huge in volume and scope, keeping 
them up to date is a challenge.  In construction, the soft-
ware documentation is available in the Solution Intent [7] 
space in the SKA Confluence [8] and the documentation 
generated from the code is available on Read the Docs [9, 
10].  Confluence is suitable tool for rapidly changing and 
evolving projects, but maintaining documentation requires 
time and dedication, and it seems that new material is being 
added at ever increasing pace.  Keeping it consistent is a 
challenge. 

Lack of Experience with the Real System 
Testing and integration are performed in a virtualized en-

vironment, it is easy to loose perspective of what is im-
portant, in particular when it comes to response time and 
resilience. 

Continuous System Integration 
The biggest challenge for our team is system integration. 

The software development team has set a goal to deliver an 

integrated system at the end of each Program Increment, 
this requires elaborate planning and synchronisation of de-
velopment and integration activities, which is not easy, as 
different components do not always have the same priori-
ties.  For example, for the signal processing subsystems, 
implementation of the signal chain is the highest priority, 
the vertical integration with the upper layers of the control 
system is a relatively low risk functionality that would ra-
ther be performed after the key functionality is developed 
and tested.   For some components, development, testing 
and integration of all interfaces in parallel is a challenge, 
in part due to limited resources.  

We are getting better in synchronising the development 
goals and activities, but for the software team, continuous 
integration of the full system remains a challenge. But we 
are learning how to efficiently make coordinated upgrades. 
The team is currently re-organising the approach to inte-
gration testing.   

Integration testing would be easier if the system is inte-
grated from the bottom up, i.e. if the devices lowest in the 
monitor and control hierarchy are developed and integrated 
first.  However, that's not possible, to shorten the develop-
ment time and reduce the risk all the layers of monitor and 
control are developed in parallel. 

Traditionally, similar systems were integrated from the 
bottom up, the components and subsystems at the bottom 
of the monitor and control hierarchy were tested first, then 
gradually integrated in more and more complex sub-sys-
tems, each tested in isolation, to verify the functionality 
and adherence to agreed interface specifications, and fi-
nally the whole system was integrated and tested. 

The SKA does not intend to abandon the goal related to 
continuous integration, the plan is to provide better support 
for integration of two or more subsystems, so that issues 
can be detected early and resolved in time to support sys-
tem integration. 

CONCLUSIONS  
Summary of what we learned over the last two years:  
 Define and document standards and guidelines as early 

as possible.  
 Document rationale for the requirements, design 

choices and technology choices.  Technical decisions 
can be questioned and re-considered at any point dur-
ing the project; a written record of rationale behind 
technical decisions helps to avoid repeating the same 
discussions over and over.  

 It is good to be flexible, but changes are costly.  Care-
fully consider the benefits and the cost of change.  

 Delivery of the Control System is often driven by 
availability of other components. The Control System 
team has to adapt to support delivery of other compo-
nents.  
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