
DEVELOPMENT OF THE SKA CONTROL SYSTEM,
PROGRESS AND CHALLENGES

S. Vrcic, T. Juerges, SKA Observatory, Macclesfield, UK

Abstract
The SKA Project is a science mega-project whose mis-

sion is to build an astronomical observatory that comprises
two large radio-telescopes: the SKA LOW Telescope, lo-
cated in the Inyarrimanha Ilgari Bundara, the CSIRO Mur-
chison Radio-astronomy Observatory in Western Australia,
with the observing range 50 – 350 MHz, and the SKA MID
Telescope, located in the Karoo Region, South Africa, with
the observing range 350 MHz – 15 GHz. The SKA Global
Headquarters is in the Jodrell Bank Observatory, near Man-
chester, UK. When completed, the SKA Telescopes will
surpass existing radio-astronomical facilities not only in
scientific criteria such as sensitivity, angular resolution,
and survey speed, but also when it comes to the number of
receptors and the range of the observing and processing
modes. The Observatory, and each of the Telescopes, will
be delivered in stages, thus supporting incremental devel-
opment of the collecting area, signal, and data processing
capacity, and the observing and processing modes. Unlike
the scientific capability, which in some cases may be deliv-
ered in the late releases, the control system is required from
the very beginning to support integration and verifica-
tion. Development of the control system to support the
first delivery of the Telescopes (Array Assembly 0.5) is
well under way. This paper describes the SKA approach
to the development of the Telescope Control System, and
discusses opportunities and challenges resulting from the
distributed development and staged approach to the Tele-
scope construction.

INTRODUCTION
The SKA Observatory [1] is an international organisa-

tion whose mandate is to build and operate two multi-pur-
pose radio telescope arrays. The SKA Low Frequency Tel-
escope array (in further text SKA LOW), located in the
Murchison region, Western Australia, with the observing
range 50 - 350 MHz, will consist of more than 131,072 log-
periodic antennas organised as 512 stations; the maximum
distance between two stations is 65 kilometres. The SKA
Mid Frequency Telescope array (in further text SKA MID),
located in the Karoo region, South Africa, with the observ-
ing range 350 MHz - 15 GHz, will comprise 197 offset-
Gregorian dishes; the dishes are 15 metres in diameter, the
maximum distance between two dishes is 150 kilome-
tres. In both Telescope arrays, the receptors (stations in the
SKA LOW and dishes in the SKA MID) are arranged in a
dense core (with the diameter of ~1 km), and three spiral
arms.

Work on the construction, which officially started in
2021, was preceded by the pre-construction activities,
which ended with the successful completion of the Critical
Design Review (CDR). The CDR was a requirement for

the transition to the construction phase. As a result, when
the Project entered the construction phase, a comprehen-
sive set of documentation was available, including the re-
quirements and architecture documents, not only for the
Observatory and for both Telescopes, but also for each ma-
jor sub-system, including the Telescope Control Sys-
tem [2, 3].

This paper provides an overview of the Telescopes and
Telescope Control System, describes how the development
team is organised, outlines the progress made so far, and
discusses some of the challenges the development team en-
countered during the construction and the strategy to ad-
dress those challenges.

TELESCOPE ARCHITECTURE
Figure 1 shows the major subsystems, flow of the ob-

served data and flow of control. Figure 1 is an overview of
an SKA Telescope; the receptors are different (Low Fre-
quency Aperture Array (LFAA) and MID array of dishes)
while the rest of the subsystems are very similar in the SKA
MID and KA LOW.

The key Telescope subsystems that capture and process
astronomical data are the receptors, Central Signal Proces-
sor and Science Data Processor. The key Telescope sup-
port systems are Synchronisation and Timing (SAT), Con-
trol System (CS), Networks and Computing Platform
where software is deployed. The sub-system known as Ob-
servatory Science Operations (OSO) provides a set of tools
for proposal submission and management, and for obser-
vation preparation, planning, scheduling, and execution.

Equipment and software for each SKA Telescope is de-
ployed as follows:
 The core of the array is located at a radio-quiet site in

a desert (Karoo Region, SA and Murchison region,
AU)

 Receptors in the spiral arms are spread across a large
area; some of the MID array dishes are located more
than hundred kilometres from the core.

 The Central Processing Facility (CPF) is located near
the core of the array.

 The Science Processing Centre (SPC, where Central
Signal Processor and Science Data Processor are de-
ployed, is located in a major urban centre (Cape Town
and Perth).

 The Engineering Operations Centre (EOC) is located
in a town relatively close to the Telescope sites (Car-
navon, SA and Geraldton, AU).

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14

Software

Software Best Practices

THMBCMO14

1221

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Given the distributed deployment, some of the monitor
and control software must be deployed locally (close to the
equipment), to provide monitor and control capability in
the absence of connectivity with the Central Processing Fa-
cility, Engineering Operations Centre, and/or Science Pro-
cessing Centre.

CONTROL SYSTEM REQUIREMENTS
Physical distribution of equipment, described in the pre-

vious section, is one of the aspects to consider when de-
signing the Control System. Other significant features of
the Telescope design are implementation of various sub-
systems, and the number of components to be monitored
and controlled. For example, the Low array will consist of
131,072 log-periodic antennas, organised as 512 sta-
tions. Signal captured by each antenna is digitised and in-
puts from different antennas aligned in time before they
can be used as input for beamforming. Each Station is re-
quired to form up to 48 beams on the sky, each beam can
be pointing to a different point in the sky. Hundreds of
software, firmware and hardware components are required
to perform signal processing for 512 stations. The Moni-
toring, Control and Calibration Subsystem (MCCS) for the
Low Frequency Aperture Array (LFAA) will consist of
hundreds of software components. In the SKA MID Tele-
scope, the Correlator and Beamformer must be able to pro-
cess up to 5 GHz of bandwidth from each of 197 receptors;
more than 800 boards, each equipped with a System on
Chip (SoC), comprising ARM processor and FPGA, are
needed to perform required signal processing. These two
examples illustrate the number of components to be moni-
tored and controlled. Other Telescope subsystems are
comparable in size and complexity, and in some cases even
more demanding.

The Telescope Control System role and requirements
may be grouped as follows:

 Requirements related to monitor and control of equip-
ment and software.

 Requirements related to execution of observations.
 Non-functional requirements.
Summary of the Control System requirements related to

equipment and software:
 Monitoring - periodically check the status of equip-

ment and software, report status on request and
change, report faults and errors, implement intelligent
status aggregation, i.e. ability to interpret impact of
faults and errors on the Telescope availability.

 Archiving - maintain historic record of the Telescope
status. Enable Operations to select the attributes to be
archived periodically and/or on change. Provide API
and tools for access to the historic record.

 Provide Application Programming Interface (API) that
can be used to trigger state/mode changes and config-
uration changes. Expose as attributes all information
required to understand the state of the system, includ-
ing information required for debugging and trouble-
shooting.

 Support for hardware / software / firmware updates.
 Support for debugging, testing and maintenance.
 Provide HMI for monitoring and control as described

above.
The requirements listed above apply at all the levels in

the system hierarchy: Telescope, subsystems, and individ-
ual components.
Summary of the Control System requirements related to
observing:
 Each telescope supports multiple observing modes -

provide an API that can be used to configure a tele-
scope for the desired observing mode.

 Point the receptors and beams; track sources (as per
observation configuration).

 Provide regular updates for pointing and delay track-
ing.

Figure 1: SKA Observatory - key subsystems.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14

THMBCMO14

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1222

Software

Software Best Practices

 Provide an API that can be used to start and stop ob-
servations (co-ordinated start/stop for pointing, cap-
ture and processing of the astronomical data, and gen-
eration of output products).

 Provide an API that can be used to subdivide the array
(both receivers and processing resources), and to oper-
ate each sub-array independently, in terms of pointing,
observing band & mode, and start/stop of observa-
tions. (Subarraying is an architecturally significant re-
quirement which increases Control System complex-
ity.)

 Provide API and HMI for monitoring observing re-
lated status per subarray (including the equipment used
by the subarray).

 Provide a forensic tool for understanding of the state
and behaviour of the system.

 Provide access to calibration correction parameters
and algorithms.

The key non-functional requirements for the Control
System are:
 Reliability - Ability to perform a required function un-

der stated conditions for a stated period of time. Meas-
ured by: Mean time between failures. Mean time to
repair.

 Resilience - Ability to function in the presence of er-
rors and failures. Ability to recover from errors and
failures. Containment (localization) of errors and fail-
ures. If some of the components fail, the rest of the tel-
escope should continue to function.

Control System reliability and resilience have a direct
impact on the Telescope availability; when the Control
System is unreliable or not working the Telescope is not
available.

Other significant non-functional CS requirements are
performance, testability, usability, scalability, extendibility,
modifiability, and upgradability.

CONTROL SYSTEM ARCHITECTURE
Telescope architecture was defined early in the design

process, some aspects of the Control System architecture
were a logical consequence of the Product Breakdown
Structure (PBS) and allocation of functionality. General
approach to Control System architecture is a layered archi-
tecture, where each subsystem, product and component is
responsible to provide an interface that can be used to con-
figure and control the operating mode, as applicable for
each entity, and to evaluate and understand the status and
behaviour. Layering is required to handle the system that
consists of many diverse components. Another feature of
the CS design is to push the monitor and control related
functionality and intelligence to the subsystems and com-
ponents; each sub-system and component then translates
higher-level parameters in the detailed configuration.

Other choices made early in the development include:
 Fundamental SKA Software Standards [4] define the

preference for open-source software and Python as the
programming language of choice.

 Choice of TANGO Controls framework [5] as the base
for the Control System implementation [2, 3].

 Control System Guidelines [2] define:
o Hierarchical approach to Control System, identify

the key components and outline flow of infor-
mation.

o A standard set of states and mode indicators, the
so-called SKA Control Model.

o A standard approach for definition of the prod-
uct/component API.

o Roles and responsibilities for individual compo-
nents.

The Telescope Monitor and Control (TMC) subsystem
which provides the overall Telescope control and monitor-
ing functions, will be deployed in the Central Processing
Facility (CPF) near the array core (although some of the
components may be deployed in the Science Processing
Centre (SPC), details are still to be defined). The Local
Monitor and Control (LMC) for each sub-system will be
deployed close to the subsystem it controls; the same ap-
plies for the smaller subsystems and individual compo-
nents. The Dish LMC is deployed in the pedestal of each
MID Dish. The Monitor, Control and Calibration System
(MCCS) for the Low Frequency Aperture Array (LFAA) is
deployed in the Central Processing Facility, and the remote
stations.

Other technological choices made so far:
 Software deployment - The Control System compo-

nents will be deployed on the Common Cluster of
Servers. Computing infrastructure is managed using
COTS tools, not part of the Telescope Control System.

 Technologies for the Common Software Service, in-
cluding virtualisation, have been selected.

 TANGO Controls framework provides built-in sup-
port for logging; the SKA approach is to use TANGO
API for setting logging levels, while the infrastructure
for collection of logs, logging repository and access to
the logging repository is provided by the Common
Software Services.

 TimescaleDB has been selected and deployed as the
backend for the archiving.

 Taranta, a browser-based tool, which is part of the
TANGO Controls ecosystem, has been selected as a
technology of choice for the CS provided User Inter-
faces (UIs).

Choice of the Alarm Handling tools is still outstanding,
the Elettra Alarm Handler and IC@MS by S2Innovations
are being considered.

DESIGN AND IMPLEMENTATION
At the beginning of construction, a set of the SKA Tango

Base Classes were developed that implements the common
API and state machines defined in the CS Control Guide-
lines [3]. Most sub-systems use the SKA Tango Base Clas-
ses as the base for development, some have chosen to de-
velop their own implementation that provides the same
functionality and API. Main reasons for the development
of the own implementation are:

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14

Software

Software Best Practices

THMBCMO14

1223

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

 Development of most systems started in parallel, as a
result, the quality of the initial versions of the base
classes was not satisfactory. The teams that were not
willing to wait for implementation to stabilise devel-
oped their own implementation.

 The concept of the base classes is somewhat contro-
versial, some of the team members believe that when
a large number of components base their implementa-
tion of the same set of classes, the system is hard to
evolve. Evolution of interfaces is always hard and has
to be synchronised; if a server changes API, the client
must be modified to use the new API. In practice, our
system has shown that it is not necessary to upgrade
all components at the same time. Quite to the contrary,
it is hard to motivate teams to keep pace with the im-
provements and upgrades. At any time, the integrated
Control System comprises components that use differ-
ent versions of the base classes. However, this is not
to say that our approach is perfect.

During the development, the control model was refined,
definition of components and commands improved. The
commands used to allocate resources and configure subar-
ray observing mode need to provide a rather large set of
parameters; in Tango Controls framework a command can
pass a single parameter. In SKA, the Tango API is used,
not only to control individual devices, but also to control
the Telescope and large sub-systems; to avoid the hard
limit on the number of parameters, some of the commands
pass a JSON script as a parameter. This allows for auto-
mated syntactic checks (against the JSON schema) and
supports weak typing; both of these techniques are used to
implement loose coupling of components [4].

As already mentioned, the SKA CS implements layering
to handle the complex system that consists of many diverse
components. Passing commands & requests through
many layers may result in a brittle system, if not carefully
implemented, a single misbehaving component may dis-
rupt operations. Each component must be implemented
defensively (containment, ability to operate in presence of
errors). Implementation of asynchronous, non-blocking
commands is described in “Asynchronous Execution of the
TANGO Commands in the SKA Control System: An Alter-
native to the TANGO Asynch Device” [6].

So far, at least a rudimentary implementation of the
TMC and virtually all LMCs have been developed. This
includes the commands that control operational state and
commands used to configure subarrays. All components
implement a standard set of state and mode indicators. In-
tegration of the CS components both for the MID and LOW
Telescopes is in progress, and that’s where the team en-
counters challenges (see the section on challenges for fur-
ther discussion).

The logging repository and related infrastructure, as well
as the Engineering Data Archive (EDA), which provides
historical record (archiving), have been deployed in the
System Integration Facilities (ITFs) and are available for
use by the integration teams.

Integration of the Control System components with the
products delivered by the contractors has started, and this

has accelerated pace of development, as the feedback from
integration contributes to the backlogs of the development
teams.

The development is currently transition from the phase
where the development was mostly driven by the software
team priorities, to the phase where priorities for the soft-
ware development are mostly driven by the availability of
the equipment and the system integration.

This is an exciting time for the SKA Observatory and the
Control System team.

STAGED DELIVERY
The SKA Telescopes will be developed, deployed, and

integrated in several stages. The Control System must pro-
vide enough functionality to support integration and veri-
fication in each stage of development.

The first milestone, known as Array Assembly 0.5
(AA0.5), will be used to prove that the system can function
as an interferometer; the functionality provided by AA0.5
will not be sufficient to support scientific observa-
tions. The AA0.5 version of the MID Telescope consists
of 4 dishes, the Correlator and Beamformer, the PST En-
gine able to receive and record a single PST beam, and the
SDP able to receive and store visibilities for an array of 4
dishes, perform calibration, and other required pro-
cessing. The AA0.5 version of the LOW Telescope will
consist of 6 stations; other subsystems are required to pro-
vide the same functionality as for the MID Telescope.

The Control System must provide the APIs and HMIs to
enable integration commissioning teams to understand and
evaluate the state of the system, visibility for the parame-
ters used in calibration, and ability to configure a subarray
for the supported processing modes, start/stop observa-
tion, configure archiving and access the archived data and
more. In short, virtually all CS functionality has to be pro-
vided but for a small system. So far only a subset of the
functionality required for AA0.5 has been implemented,
work on status aggregation and alarm reporting is still out-
standing.

When it comes to non-functional requirements, in the
early stages, resilience is extremely important; it is to ex-
pect that other components and sub-system will not be sta-
ble, the CS will have to detect and report issues, function
in the presence of failures, and return to normal operations
when the failed components recover. In other words, the
Control System must be able to contain failures and com-
pensate for deficiencies in other components.

Testability and modifiability will be verified over time,
as the system expands and evolves. Some aspects of the
Control System performance will be tested in early Array
Assemblies; but most will be verified only when almost all
equipment becomes available; the number of components
to monitor and control, to a great extent, impacts the per-
formance. In the same manner, scalability will be verified
late in the project construction.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14

THMBCMO14

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1224

Software

Software Best Practices

CHALLENGES
Time Zones

The software teams working on implementation of the
Control System software are distributed over many time
zones, from eastern Australia to western Canada, and espe-
cially for the teams in Australia and Canada, participation
in the meetings and events is a challenge. The teams are
distributed, and the number of developers is growing, it is
expensive and difficult to organise face-to-face meet-
ings. The SKA team has been adapting to this situation
from the beginning, and, so far, team cohesion remains
strong.

Evolution of Interfaces
All subsystems are being developed in parallel, for the

Control System that means that detailed requirements are
not available, or, if defined in pre-construction, are not ap-
plicable anymore. As the Telescope subsystems and com-
ponents are designed and developed, the APIs get refined
and modified. This is to expect in an Agile development
environment but can cause delays and rework.

Rapid Growth
The guidelines for implementation of the Control Sys-

tem were developed early in the development, and have
been widely adopted, but, as the pace of the development
accelerates and the number of teams and developers in-
creases, the tendency to diverge from the project standards
seems to gain momentum. This may seem counterintui-
tive, as refusal to adopt project standards usually increases
the workload, but under the pressure to deliver the teams
sometimes opt for short term gains (or perceived gains).

Entropy
Given the size of the project and diversity of components

and subsystems, maintaining the documentation up to date
is a challenge. Documents developed in pre-construction
define requirements, architecture, and interfaces for all
sub-systems, they are huge in volume and scope, keeping
them up to date is a challenge. In construction, the soft-
ware documentation is available in the Solution Intent [7]
space in the SKA Confluence [8] and the documentation
generated from the code is available on Read the Docs [9,
10]. Confluence is suitable tool for rapidly changing and
evolving projects, but maintaining documentation requires
time and dedication, and it seems that new material is being
added at ever increasing pace. Keeping it consistent is a
challenge.

Lack of Experience with the Real System
Testing and integration are performed in a virtualized en-

vironment, it is easy to loose perspective of what is im-
portant, in particular when it comes to response time and
resilience.

Continuous System Integration
The biggest challenge for our team is system integration.

The software development team has set a goal to deliver an

integrated system at the end of each Program Increment,
this requires elaborate planning and synchronisation of de-
velopment and integration activities, which is not easy, as
different components do not always have the same priori-
ties. For example, for the signal processing subsystems,
implementation of the signal chain is the highest priority,
the vertical integration with the upper layers of the control
system is a relatively low risk functionality that would ra-
ther be performed after the key functionality is developed
and tested. For some components, development, testing
and integration of all interfaces in parallel is a challenge,
in part due to limited resources.

We are getting better in synchronising the development
goals and activities, but for the software team, continuous
integration of the full system remains a challenge. But we
are learning how to efficiently make coordinated upgrades.
The team is currently re-organising the approach to inte-
gration testing.

Integration testing would be easier if the system is inte-
grated from the bottom up, i.e. if the devices lowest in the
monitor and control hierarchy are developed and integrated
first. However, that's not possible, to shorten the develop-
ment time and reduce the risk all the layers of monitor and
control are developed in parallel.

Traditionally, similar systems were integrated from the
bottom up, the components and subsystems at the bottom
of the monitor and control hierarchy were tested first, then
gradually integrated in more and more complex sub-sys-
tems, each tested in isolation, to verify the functionality
and adherence to agreed interface specifications, and fi-
nally the whole system was integrated and tested.

The SKA does not intend to abandon the goal related to
continuous integration, the plan is to provide better support
for integration of two or more subsystems, so that issues
can be detected early and resolved in time to support sys-
tem integration.

CONCLUSIONS
Summary of what we learned over the last two years:
 Define and document standards and guidelines as early

as possible.
 Document rationale for the requirements, design

choices and technology choices. Technical decisions
can be questioned and re-considered at any point dur-
ing the project; a written record of rationale behind
technical decisions helps to avoid repeating the same
discussions over and over.

 It is good to be flexible, but changes are costly. Care-
fully consider the benefits and the cost of change.

 Delivery of the Control System is often driven by
availability of other components. The Control System
team has to adapt to support delivery of other compo-
nents.

REFERENCES
[1] SKA Observatory, https://www.skao.int/
[2] L. Pivetta, A. DeMarco, S. Riggi, L. Van den Heever, and

S. Vrcic, “The SKA Telescope Control System Guidelines

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14

Software

Software Best Practices

THMBCMO14

1225

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

and Architecture”, in Proc. ICALEPCS'17, Barcelona,
Spain, Oct. 2017, pp. 34-38.
doi:10.18429/JACoWICALEPCS2017MOBPL03

[3] S. Vrcic, “Design Patterns for the SKA Control System”, in
Proc. ICALEPCS'21, Shanghai, China, Oct. 2021, pp. 343-
347. doi:10.18429/JACoWICALEPCS2021TUBR02

[4] M. Bartolini, N. Rees, “Fundamental SKA Software Stand-
ards” SKA, SKA-TEL-SKO-0000661.

[5] TANGO-Controls,
https://www.tangocontrols.org/

[6] B. A. Ojurt, D. Devereux, A. J. Venter, S. N. Twum, S.
Vrcic, “Asynchronous Execution of the TANGO Com-
mands in the SKA Control System: An Alternative to the

 TANGO Asynch Device”, presented at ICALEPCS’23,
Cape Town, South Africa, Oct. 2023, paper TH1BCO04,
this conference.

[7] P Wortmann, L Christelis, U Badenhorst, B Mort, P Swart,
F Graser, G le Roux, V Allan, “Solution Intent Definition
Document”, SKA, SKA-TEL-SKO-0001065.

[8] Atlassian tools: Confluence and JIRA,
https://www.atlassian.com/

[9] SKA Developer Portal, https://developer.skao.int/
[10] Read the Docs, https://about.readthedocs.com

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO14

THMBCMO14

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1226

Software

Software Best Practices

