
SECoP INTEGRATION FOR THE Ophyd HARDWARE
ABSTRACTION LAYER

P. Wegmann∗, K. Kiefer, W. Smith, L. Rossa, O. Mannix, HZB, Berlin, Germany
M. Zolliker, PSI, Villigen, Switzerland

E. Faulhaber, TUM FRMII, Munich, Germany

Abstract
At the core of the Bluesky experimental control ecosys-

tem the Ophyd hardware abstraction, a consistent high-level
interface layer, is extremely powerful for complex device
integration. It introduces the device data model to EPICS
and eases integration of alien control protocols. This paper
focuses on the integration of the Sample Environment Com-
munication Protocol (SECoP) into the Ophyd layer, enabling
seamless incorporation of sample environment hardware into
beamline experiments at photon and neutron sources. The
SECoP integration was designed to have a simple interface
and provide plug-and-play functionality while preserving
all metadata and structural information about the controlled
hardware. Leveraging the self-describing characteristics of
SECoP, automatic generation and configuration of Ophyd
devices is facilitated upon connecting to a Sample Environ-
ment Control (SEC) node. This work builds upon a modified
SECoP-client provided by the Frappy framework, intended
for programming SEC nodes with a SECoP interface. This
paper presents an overview of the architecture and imple-
mentation of the SECoP-Ophyd integration and includes
examples for better understanding.

INTRODUCTION
Moving and integrating research equipment between facil-

ities with different Experimental Control Systems (ECS) can
be a challenging and time-consuming process. Sample envi-
ronment hardware, in particular, is usually not permanently
attached to a specific experiment and is often moved both
within and between research facilities. The Sample Environ-
ment Communication Protocol (SECoP) [1] has been devel-
oped under direction of the International Society for Sample
Environment (ISSE) [2] to facilitate this process. It is also
intended as an overarching solution for standardising com-
munication with sample environment equipment at photon
and neutron research facilities. The core design principles
of the protocol (i.e. simple, inclusive, self-describing and
providing rich metadata), were chosen to achieve this goal.
In particular, the self-describing properties and the inclusive
design philosophy behind SECoP facilitate its integration
into various experimental control systems. This is also lever-
aged in this publication for the integration of SECoP into
the hardware abstraction layer Ophyd [3], with the effect
that Ophyd devices are constructed automatically upon con-
nection, whilst retaining all metadata about the controlled
hardware. A crucial application of this SECoP-Ophyd inte-

∗ peter.wegmann@helmholtz-berlin.de

gration we introduce here is to facilitate heterogeneous con-
figurations, integrating fixed beamline equipment supported
by EPICS with mobile sample environment equipment sup-
ported by SECoP in the same Bluesky [4] environment.

SECoP Hardware Abstraction

accessibles

Sample Environment Control Node
(SEC Node)

Modules

Parameters

Properties

Commands

Properties

Properties

Properties

Figure 1: Schematic of SECoP hardware abstraction.

According to the SECoP specification [5], the access point
for a SECoP device is a SEC node. The SEC node thereby
acts as a server that allows connections from an arbitrary
number of clients and gives access to the published function-
alities of sample environment equipment. Within the SEC
node, physical quantities of a sample environment device
are logically represented by modules. The term module has
been deliberately chosen to distinguish it from a device, as a
sample environment apparatus is often composed of a num-
ber of modules and is only called a device as a whole. All
modules are composed of accessibles, which can either be
Parameters or Commands. While parameters provide live
information on modules, commands are provided to initi-
ate specific actions of a module. This internal structure is
depicted in Fig. 1. At every level, static information of the
parent entity is provided by property fields. They ensure a
structured way of holding metadata regarding the SEC node
and hardware it is connected to. For example, at the param-
eter level, the mandatory datainfo property holds important
information about the datatype, unit and other metadata. Fur-
thermore, the SECoP standard defines interface classes for
modules, with predefined functionality and the meaning of
specific mandatory accessibles and properties. Most notable
here are the Readable and Drivable interface classes, en-
abling a standardised way of constructing readable modules
such as a simple temperature sensor and drivables such as

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO10

THMBCMO10

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1212

Software

Software Architecture & Technology Evolution



a controlled temperature or a magnetic field. This allows
an ECS to determine the functionality of a module directly
from its description and configure itself accordingly.

Ophyd Hardware Abstraction

Device

… Signal Device

Signal …

Figure 2: Tree-like structure of an Ophyd Device.

In Ophyd hardware is represented as a Device, which is
hierarchically composed of sub-devices and Signals. This
means that an Ophyd Device has a tree-like structure of
Devices as nodes and Signals as leaves. This tree can have
an arbitrary depth as shown in Fig. 2. A Signal represents an
atomic variable within the Bluesky ecosystem that cannot be
further decomposed by layers above Ophyd. Signals can be
either read-only, write-only or read/write, depending on the
capabilities of the underlying hardware being represented. In
addition, each Signal has a describe() method that returns all
available metadata for the Signal, including mandatory fields
such as dtype (JSON type of the Signal), shape (specifying
whether the transported data is a scalar or an array, including
exact dimensions of the array), and source (identifier for
the signal, e.g. EPICS process variable). Some optional
fields like units or precision are also specified , but custom
fields can be added at will. Within a device, the Signals are
grouped into read signals and configuration signals.

The supported interfaces of a Device are realised in a
modular way by utilising mixin classes. This allows for a
flexible way of constructing Ophyd devices with varying
complexity and functionality. The minimum interface re-
quired is the Readable interface, which permits a formalised
way of reading and retrieving metadata of all read signals.
Other mixins, such as Movable, enable interfacing with slow-
moving devices like a temperature controller.

Integration of Other Control Systems Into Ophyd
Since Ophyd does not come with any device drivers to

directly interface with hardware, another layer is usually
needed underneath it. Currently Ophyd is mostly used to
integrate with EPICS-backed hardware, but various pack-
ages for interfacing with other control systems have been
published, of which the following are the most relevant:

• yaqc-bluesky [6]: A bluesky interface to the yaq [7]
instrument control framework.

• tango-ophyd [8]: Experimental and incomplete inte-
gration for the Tango control system.

• pycertifspec [9]: Integration for the SPEC instru-
ment control and data acquisition software.

The yaq project stands out here since it is very similar
to SECoP in some regards. The standard was built to be
self-describing, simple, portable and reusable, but lacks fo-
cus on rich metadata. Much like the packages presented
above, the integration SECoP-Ophyd facilitates the creation
of Ophyd devices representing connected hardware compo-
nents. But in contrast to the other integrations, generated
Devices are not atomic. Meaning that they are more com-
plex and composed of sub-devices with interdependencies
between them.

SECoP-Ophyd also differs in another aspect from the pre-
sented packages in that it builds on the not yet officially
released Ophyd.v2. API that utilises the Python asyncio
library, which is also at the core of the Bluesky Run Engine.
Even though Ophyd.v2 is not officially released yet, the inter-
face is already reasonably stable, and use of the new API was
chosen because integrating control systems is made easier
by only demanding a narrow backend interface. Another
key advantage is that support for SECoP commands can be
ensured by the SignalX Class introduced in Ophyd.v2.

The implementation of the SECoP-Ophyd integration de-
scribed here heavily relies on a SECoP-client provided by
the Frappy-package [10]. The Frappy-client offers an al-
ready mature interface and is responsible for handling the
connection and all SECoP communication to the SEC node.

ARCHITECTURE OVERVIEW
An overview of the software architecture used for the

SECoP-Ophyd integration is given in Fig. 3. On the right
side, a SEC node as an interface to a logical device is shown,
which may be composed of several physical hardware com-
ponents. Together they can be regarded as mobile sample
environment equipment (marked in green). Within the SEC
node, the components of the equipment are represented as in-
dividual modules. In the centre of Fig. 3 the SECoP-Ophyd
integration is shown in yellow. At its core is the SEC node
Ophyd.v2 Device and the Frappy-client. Structurally the
SECoP-Ophyd integration mirrors the device structure pre-
defined by the SEC node. A clear separation of concerns is
achieved by having the SECoP-client act as backend for the
Ophyd.v2 devices handling the connection and SECoP com-
munication to the SEC node. In order to make the Frappy
SECoP-client compatible with Ophyd.v2, it was wrapped
in a new class, ensuring that requests to the SEC node are
non-blocking.

The SEC node Ophyd.v2 Device acts as an entry point and
initialises the SECoP-client object upon construction. The
constructor for the SEC node Ophyd.v2 Device has a very
simple interface and requires only the IP address and port
number of the SEC node. Once the client has established
a connection to the SEC node and parsed the answer to the
describe message (for more information on the describe
message see [1]) it has sent to the SEC node, child devices
are created for each module present within the SEC node.
These devices all provide the interface of a standard readable
or movable device, which is expected by the Bluesky run

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO10

Software

Software Architecture & Technology Evolution

THMBCMO10

1213

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



local bluesky environment
secop-ophyd

mobile se equipment

SECoP-client
(frappy) Sec Node

Hardware
ComponentHardware

ComponentHardware
Component

Sec Node
Ophyd.v2

module:a
Ophyd.v2module:a

Ophyd.v2module:a
Ophyd.v2

Bluesky
run engine

EPICS-Ophyd
deviceEPICS-Ophyd

deviceEPICS-Ophyd
device

SECoP
TCP

Bluesky

Interface

Figure 3: Architecture overview of how the SECoP-Ophyd integration interfaces with the Bluesky run engine and a SEC
node.

engine. This means that they can be easily integrated and
operated alongside other Ophyd devices that are connected to
hardware via EPICS or any other underlying control system.
This is indicated by the greyed out EPICS-Ophyd device
under the Bluesky run engine.

HARDWARE ABSTRACTION
CONVERSION FROM SECOP TO OPHYD

The goal was to have direct modelling of a SEC node and
all attached modules, properties and accessibles as an Ophyd
Device. This is facilitated by the concise and machine-
readable information published by all given SEC nodes. The
colourisation in Figs. 1 and 2 indicates the chosen corre-
spondence between the different concepts of representing
hardware. As implied by the red colour, SEC node and
attached modules are modelled by Ophyd Devices. Respec-
tively hinted in blue, all Properties pertaining to the SEC
node and modules, as well as Parameters, are turned into
Signals in the final Ophyd Device. All metadata that was
held in the Properties of a given Parameter is still accessible
via the corresponding Signals describe method.

SECoP Drivable Modules
One crucial feature of SECoP and Ophyd is their abstrac-

tion of slow settable values. The SECoP Drivable interface
class requires modules to have a target and a status parame-
ter, in addition to an argument-less stop command. As soon
as a new target value is received by the SEC node, the status
value switches from an IDLE state to a BUSY state, and it
goes back to IDLE when the target is reached. There are
further possible state transitions the module can take, but
this is the simplest sequence of state transitions. Drivable
modules in SECoP correspond directly to Movable devices
in Ophyd. The interface for a Movable only requires a set()
method, with the new value as an argument and a Status ob-
ject as a return value, which is marked done once the device
has finished moving. In the case of Ophyd.v2, the returned
Status is an AsyncStatus that can be awaited. Additionally,
when the optional Stoppable mixin is added, a functionally
complete representation of a Drivable is achieved within
Ophyd. If the set() method of a Movable Ophyd device is

invoked, the SECoP-Ophyd integration internally transmits
a SECoP message to the SEC node to update the desired
target value and returns an AsyncStatus. Upon construction
of the AsyncStatus, an asyncio Task is started, that moni-
tors the status parameter of the driven module. Once the
status changes from BUSY to IDLE, the Task finishes and
the AsyncStatus is marked done.

SECoP Commands
SECoP commands are treated in a special way, as there is

no equivalent concept in Ophyd. At first glance, the SignalX
class recently introduced in Ophyd.v2 looks promising. It
implements the command design pattern [11], which means
that these signals provide an execute() method without
any input parameters for triggering specific actions. How-
ever, SignalX alone is inadequate for modelling commands
that have multiple arguments and return values. Because
of this limitation, it was decided to encapsulate commands
in sub-devices. Each sub-device contains signals that can
be read and written for each argument, as well as signals
that can only be read for each return value. There is also
a SignalX signal to initiate the execution of the command.
Furthermore, the signals related to the return values are
configured as read signals of the device, while the other
signals are set as configuration signals. To execute a SECoP
command, the argument signals must first be assigned val-
ues. Then the execute() method of the SignalX signal
is called. Internally, the SECoP-clientprogram then sends
the corresponding command to the SEC node. As soon as
the response is received by the SECoP-client, the values are
written to the corresponding signals.

Composite Data Types
Another challenge in converting from SECoP to Ophyd

is the difference in the supported data types that can be held
in Signals and Parameters. Ophyd Signals are limited to
scalars and arrays of the primitive data types number, string
and boolean, as specified by the JSON specification [12],
while SECoP has broader capabilities. Parameters can hold
composite data types such as tuples and structs, which can
be represented by mixed type JSON arrays and JSON ob-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO10

THMBCMO10

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1214

Software

Software Architecture & Technology Evolution



jects. As composite datatypes cannot be represented by a
single Signal, they are modelled recursively by sub-devices
and Signals. Additionally, a Signal of type string is added.
included, which contains the raw JSON object or array that
was cast to a string. These string type Signals containing the
raw JSON object or string are needed when a value needs
to be written to such a Parameter. Writing to sub-device
Signals would result in the struct or tuple being sent with
only partially updated information.

Similar problems arise when representing arrays of com-
posite data types. These arrays cannot be decomposed into
subdevices and signals, and thus, they are represented as
string arrays with the JSON value of the composite data type
cast to string as entries.

TESTING WITH ACTUAL HARDWARE
The integration of SECoP-Ophyd was successfully tested

on a Universal Robots UR3 robot. The SEC node that di-
rectly interfaced with the robot is composed of several Read-
able and Drivable modules and is designed to use the robot
as a sample changer. After demonstrating the ability to ex-
ecute Bluesky plans on the Ophyd devices generated by
the SECoP-Ophyd integration in isolation, a heterogeneous
setup was also tested. This involved the concurrent operation
and integration into Bluesky plans alongside an ophyd.v1
device that represents a Keysight multimeter via EPICS pro-
cess variables.

CONCLCUSION AND FUTURE PLANS
The integration of SECoP into Ophyd that we presented

in this paper is an important step towards promoting the easy
integration of sample environment equipment into beamlines
at neutron and photon research facilities, that use Bluesky
for experiment specification and orchestration. It has been
demonstrated that both hardware abstractions utilise com-
parable concepts, which can be converted into each other
without significant loss. Structural and functional represen-
tations of a SEC node and its associated modules, properties
and parameters have been formalised, and appropriate ways
of expressing the functionality of readable and drivable in-
terface classes in Ophyd have been demonstrated. Conse-
quently, we demonstrate the ability to collect and integrate
sample environment metadata provided by a SEC node with
metadata from the control system. Furthermore, the use of
the Ophyd.v2 API has enabled the representation of SECoP
commands within Ophyd. A suitable software architecture
was found to implement the SECoP-Ophyd integration in-
corporating a SECoP-client as backend, ensuring a clear
separation of concerns and promoting code reuse.

As a next step, optional features supported by Bluesky
should be investigated to determine if SECoP can provide
information and features to support them in a standardized
and formal manner. Moreover, compatibility of Ophyd de-
vices generated by the SECoP-Ophyd integration with the

Nexus Format [13] requires further investigation. Lastly it
is needed to apply the concept to real use cases at beamlines
where sample environment equipment has to be integrated
into an existing Bluesky environment, while further devel-
opment of the SECoP-Ophyd integration is carried out on
a GitHub repository [14] of the International Society for
Sample Environment.

ACKNOWLEDGMENT
The authors would like to thank all those involved in

the SECoP@HMC (ZT-I-PF-3-040) project, past and and
present. The project is supported by the Helmholtz Meta-
data Collaboration (HMC), an incubator-platform of the
Helmholtz Association within the framework of the Infor-
mation and Data Science strategic initiative. Funding for the
project was issued by the Initiative and Networking Fund of
the Helmholtz Association in the framework of the HMC
project call.

REFERENCES
[1] K. Kiefer et al., “An introduction to SECoP – the sample en-

vironment communication protocol”, J. Neutron Res., vol. 21,
no. 3-4, pp. 181–195, 2020. doi:10.3233/jnr-190143

[2] ISSE, https://sampleenvironment.org/
[3] ophyd, https://github.com/bluesky/ophyd
[4] D. Allan, T. Caswell, S. Campbell, and M. Rakitin,

“Bluesky’s ahead: A multi-facility collaboration for an a la
carte software project for data acquisition and management”,
Synchrotron Radiat. News, vol. 32, no. 3, pp. 19–22, 2019.
doi:10.1080/08940886.2019.1608121

[5] SECoP, https://github.com/SampleEnvironment/
SECoP

[6] yaqc-bluesky, https://github.com/bluesky/yaqc-
bluesky

[7] K. F. Sunden, D. D. Kohler, K. A. Meyer, P. L. C. Parrilla,
J. C. Wright, and B. J. Thompson, “The yaq project: Stan-
dardized software enabling flexible instrumentation”, Rev.
Sci. Instrum., vol. 94, no. 4, p. 044 707, 2023.
doi:10.1063/5.0135255

[8] ophyd-tango, https://github.com/bluesky/ophyd-
tango

[9] pycertifspec, https://github.com/SEBv15/
pycertifspec

[10] Frappy, https://github.com/SampleEnvironment/
frappy

[11] E. Gamma, Ed., Design patterns, Elements of reusable object-
oriented software. Addison-Wesley, 2011, 395 pp.

[12] D. Crockford and C. Morningstar, “Standard ECMA-404 The
JSON Data Interchange Syntax”, Rep. ECMA 404, 2017.
doi:10.13140/RG.2.2.28181.14560

[13] M. Könnecke et al., “The NeXus data format”, J. Appl. Crys-
tallogr., vol. 48, no. 1, pp. 301–305, 2015.
doi:10.1107/s1600576714027575

[14] secop-ophyd, https://github.com/
SampleEnvironment/secop-ophyd

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO10

Software

Software Architecture & Technology Evolution

THMBCMO10

1215

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


