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Abstract
Brookhaven National Laboratory’s Collider-Accelerator

Department houses over 550 Front-End Computers (FECs)
of varying specifications and resource requirements. These
FECs provide operations-critical functions to the complex,
and uptime is a concern among the most resource constrained
units. Asynchronous data delivery is widely used by ap-
plications to provide live feedback of current conditions
but contributes significantly towards resource exhaustion of
FECs. To provide a balance of performance and efficiency,
the Reflective system has been developed to support unre-
stricted use of asynchronous data delivery with even the
most resource constrained FECs in the complex. The Re-
flective system provides components which work in unison
to offload responsibilities typically handled by core controls
infrastructure to hosts with the resources necessary to han-
dle heavier workloads. The Reflective system aims to be
a drop-in component of the controls system, requiring few
modifications and remaining completely transparent to users
and applications alike.

BACKGROUND
The Control System of the Collider-Accelerator Depart-

ment (C-AD) at Brookhaven National Laboratory provides
the operational interface to RHIC and all the other acceler-
ators in the C-AD complex. Over 77,000 Accelerator De-
vice Objects (ADOs) provide the software interface to more
than a million settings and measurements for accelerator
equipment [1]. ADO servers may run on different hardware
platforms, but a majority of the ADOs in C-AD are hosted
on Front End Computers (FECs) with limited memory and
CPU resources. Efforts to upgrade those systems are often
impeded by upgrade or redesign costs, labor efforts, and
scheduling concerns. As such, effective and efficient use of
existing resources is paramount.

The communications protocol used by ADOs has four
primary data operations: synchronous gets (blocking while
retrieving data), synchronous sets (updating a set point),
metadata fetches (retrieving static properties about a read-
back or set point), and asynchronous gets (receiving live
streams of data updates). Of these, the first three are state-
less and have little impact on resource usages beyond the call
context. The last, asynchronous gets (asyncs), is a stateful
operation that require the maintenance of information such
as client identifiers, data requests, and data queues, which
can consume substantial memory when numerous clients
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are connected, or when high bandwidth asynchronous data
is requested. Many C-AD applications establish asyncs by
default, which can quickly consume resources on an FEC
causing a crash of the ADO software. This interrupts con-
nections to other users, and in the worst cases interrupts
operations. Async load has been attributed to FEC down-
time in the past, and has caused certain FECs to be identified
as low-resource relative to demand. These units must be
treated with caution when interacting with hosted ADOs to
prevent resource exhaustion. This can require extraneous
communication between users, developers, and the control
room to coordinate use, limiting both operational and devel-
opment efforts.

Previous efforts to develop a data reflection system took
place over the last decade [2], but fell out of use due to re-
liability and maintainability issues within the system. The
previous reflective tools suffered from connection issues,
inherent to the underlying communication layer implemen-
tation, which had the potential to place multiple systems
into bad states. Remedying this required process restarts
and manual intervention to restore communication between
clients and devices. Since then, general purpose calcula-
tion engines have been used as stand-ins for a proper reflec-
tive system, but are limited by overhead and configuration
challenges. These issues of reliability, configurability, and
maintainability were identified when outlining plans for an
upgraded reflective system, and a new architecture was de-
signed from the ground up to satisfy those needs.

REQUIREMENTS
The primary requirement for this project is straightfor-

ward: develop a system which removes asynchronous load
from resource-constrained ADOs. However, the system must
do so while also:

• Handling connection interruptions gracefully, allowing
for quick and correct recovery from transient commu-
nication failures

• Being easy to configure and deploy, with a conspicuous
way to examine connected clients and reflected devices

• Fitting seamlessly into the Controls ecosystem with
minimal changes necessary to existing clients and with-
out user intervention

SOFTWARE ARCHITECTURE
The software architecture of this system has been designed

to be highly modular, with different logical units being bro-
ken into separate processes as outlined in Fig. 1. The first
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unit, the Reflective Server, provides the core functionality
of the system. These are responsible for interfacing directly
with client applications and providing facilities to communi-
cate with ADOs efficiently. The second unit is the Reflective-
Aware Central Name Service, which allows interested clients
to quickly identify and retrieve details necessary to commu-
nicate with Reflective Servers.

Reflective Server
The Reflective Server (RS), core of the architecture, prox-

ies ADO protocol requests between clients and devices. The
client-facing interface (frontend) and device-facing interface
(backend) are logically separate code, with an intermediate
binding layer providing necessary logic to process requests.
Any number of RS instances can be spawned, typically pro-
portional to the number of FECs needing reflection. By
convention, an RS instance handles requests for multiple
ADOs hosted on a singular FEC. By assigning one RS to
each FEC, the backend connections to the ADO can be ag-
gregated, necessitating only one active TCP/IP connection
to that FEC to handle any number of asynchronous get re-
quests. However, this is not a restriction; one RS can reflect
any number of ADOs hosted on any number of FECs.

Asynchronous Requests Asynchronous get requests
(asyncs) from the frontend receive special handling when
passing through an RS. When processing an async, the RS
first checks if it has requested the given data from the re-
flected device through its backend interface. If the backend
does not have an established async for the requested data, the
backend requests that data be delivered asynchronously from
the device. Once a backend async request is established, the
RS adds a pointer to the frontend client to a queue of inter-
ested parties for the data, and returns a successful status to
the client. If the backend fails to establish an async request
due to some reason (data unavailable, internal device error,
etc.), the associated error data is passed back to the client for
processing just as if the client were communicating directly
with the ADO.

Once a backend async is active, the device will deliver
any data updates to the RS backend as they are available.
These updates may be the result of a externally changed
setpoint, or an internal data update - this functionality is
dependent on the specific ADO implementation. When the
backend receives an async update from the ADO, the RS
binding logic begins fanning that data out to all interested
frontend clients. Each frontend client has its own send-queue
and thread, ensuring that misbehaving clients do not cause
performance issues for the rest.

When a client is ready to exit, the ADO protocol states
that a cancellation request shall be issued to the RS. The RS
will remove the client from the interested parties and cleanly
terminate the frontend connection upon receiving a cancella-
tion from a frontend client. If cancellations are received for
all parties interested in a specific piece of data, the RS will
request through the backend that the ADO stop delivering
the given data. This ensures that the RS is not processing,

nor is the ADO delivering, data that is unnecessary. If all
data requests are cancelled to an ADO, the RS will cleanly
terminate the backend connection to that ADO to preserve
both RS and FEC resources.

Synchronous Get Requests For synchronous get re-
quests, processing is done to prevent unnecessary calls to
the ADO. If a backend asynchronous connection already
exists between the RS and the ADO which for the requested
data, the RS simply returns the requested data from an inter-
nal cache. This improves efficiency as the RS is guaranteed
to have the latest data from the ADO. If an active async does
not exist, the frontend get request is simply proxied through
the backend to the reflected ADO. Proxying adds a second
round trip to the overall latency, so utilizing cache data has
the potential to reduce overall request-response latency by
half.

Other Requests As designed, all other requests are
proxied from frontend client to the ADO nearly directly.
Minimal request inspection is done to determine the destina-
tion ADO for the request. The response from the backend is
passed back to the frontend unchanged. There is overhead
associated with the round trip time from backend to ADO,
and data marshalling within the RS binding layer, but overall
these sum to only a 2x increase in latency for requests.

Reflective-Aware Central Name Service
The second aspect of the overall reflective architecture is

the Reflective-Aware Central Name Service (rCNS), tasked
with locating and directing clients to specific Reflective
Servers.

Much as an RS is a proxy to an ADO, rCNS is a proxy
to the Central Name Service (CNS). CNS is a core service
of C-AD’s controls system; it allows applications to lookup
hostname and RPC program information for any given ADO
using a common identifier such as a name. The choice to
create a separate rCNS process prevents the master CNS
database from being changed to support reflection. This al-
lows clients to bypass reflection altogether simply by query-
ing the master CNS server rather than rCNS, and provides a
simple fallback in the case that rCNS or an RS fails.

rCNS provides the same information over the same proto-
col, but additionally tracks RS instances and which ADOs
they reflect. When rCNS receives a request, it first checks
to see if the name being requested is reflected by an RS. If
so, rCNS sends back its internal data which the client will
use to initiate a connection with the RS, and in turn leverage
the benefits of the reflective system. If rCNS determines
the requested name is not a reflected ADO, then it simply
forwards the request onward to the master CNS server. This
request will be filled by CNS as normal, and rCNS simply
passes the response back up to the client. The client will
connect directly to the ADO in this case.

Registration with rCNS is a dynamic process, with infor-
mation pointing to RS instances being stored in memory.
When an RS is brought online, it checks in with rCNS and
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Figure 1: Data flow across the Reflective Server.

provides its hostname, RPC program information, and a list
of ADOs it reflects. Likewise, when an RS exits, it dereg-
isters from rCNS; this removes its information from rCNS.
Upon deregistering, an RS has the option to trigger fallback
behavior - meaning that incoming requests are forwarded
directly to the ADO in the RS’s absence. This is an opt-in
behavior, as many ADOs leveraging RS technology reside
on FECs unable to cope with the true number of requests, so
a dead RS with fallback enabled would quickly overwhelm
the FEC with incoming asynchronous connections.

Client Applications The reflective system has been de-
signed to work seamlessly with existing client applications.
Clients simply need to query the rCNS instance to leverage
reflection for ADOs. In C-AD, this is performed by setting
the CNSHOST environment variable to the host running the
rCNS process; typically, this is set to the master CNS host.
Once that variable is changed, any requests will query the
rCNS instead and retrieve details for an RS (if one exists for
the requested ADO). Providing the reflective system as an
opt-in allows for a staged roll out. The roll out can be done to
specific users or specific workstations simply by modifying
the environment in each scope.

Additionally, sample applications have been provided
which are reflective-aware without necessitating switching
to reflection for processes for a given user or workstation.
This was accomplished by releasing a binary which sets the
CNSHOST variable appropriately before all application logic,
allowing requests originating from that application to use re-
flection. This was invaluable in the commissioning process,

giving an easy way to test while also providing an escape
hatch in case of failure. Long-term, special applications are
not expected to be used as the reflective system is adopted
more widely.

HARDWARE ARCHITECTURE
No special hardware is involved with deploying a Reflec-

tive Server. Commodity, off-the-shelf servers and worksta-
tions running a common Linux distribution can host an RS
instance. C-AD utilizes a virtualized environment for server
deployments, and a dedicated virtual machine (VM) was
commissioned for hosting an RS. The reflective VM was
created with 4 CPU cores running at 2.2GHz, and 11GB
of memory. These specifications are more than capable of
running multiple RS instances, and far exceed the resource
limitations of the FECs hosting reflected ADOs. Hosting RS
instances on a local server allows flexibility in deployment
strategy, resource allocation, and network placement.

IMPLEMENTATION
The entire reflective stack was designed and implemented

in Python. Since the reflective system does not have hard
latency constraints, Python was a natural choice with which
to develop this project. Python as a development environ-
ment has become a major player within C-AD over the past 5
years [3]. The tools and libraries developed for Python pro-
vide communication support with feature and performance
parity with respective C++ and Java counterparts.
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The Reflective Server implementation in Python is a mod-
ular structure, with the communication frontend, backend,
and binding layers all being separate classes. The binding
layer interfaces with frontend and backend classes to provide
the necessary logic and translation for data flow between
them. The binding layer is designed to be thread-safe, using
common concurrent data structures provided by Python, to
ensure safety regardless of the design of frontend or backend
implementations.

Frontend The frontend interface acts as a server - that
is, it provides an API compatible with the ADO protocol
with which clients can communicate. This is done by wrap-
ping custom logic around SUN-RPC communication code,
which is the basis for the ADO protocol. Initial attempts
at the project began with using application-level communi-
cation tools, but those libraries were foregone as too much
functionality is abstracted away for use cases in the RS de-
sign. Contributing to the success of the project is the fact that
ADO communication libraries for Python are designed in a
modular way as well, exposing much of the needed low-level
functionality such as request inspection and modification,
and connection management.

Backend The backend interface acts as a client, connect-
ing to FECs and requesting data from them. This use-case
is straight forward and did not require any unusual handling
to make it work in the RS. This allowed existing, high-level
communications tools to be used when implementing the
backend interface. These tools are well tested and in com-
mon use across the complex, and include features such as
robust reconnection management, connection multiplexing
to ADOs, and efficient processing algorithms - the benefits
which are realized by the libraries’ use in RS.

PERFORMANCE
Performance comparison of the Reflective Server to direct

communication with ADOs was completed in Python, uti-
lizing C-AD standard communication tools along with the
python timeit module for benchmark analysis. These tools
may incur additional latency inherent with using Python, but
both sides of the comparison utilize the same tools so that
base latency would be moot.

Synchronous Gets (Non-Cached) Non-cached syn-
chronous gets represent a simple proxy between frontend
client and backend ADO; no additional processing to the
request is performed, so the expected overhead from passing
through the RS should amount to no more than 1 × 𝑅𝑇𝑇.

Concrete testing in Python supports this claim. Table 1 dis-
plays results of the timeit tests. The results are reproducible
and represent a 1.7x overhead when using reflection, rein-
forcing the efficiency of the RS implementation in Python.
Additionally, since all other operations (sets, metadata, etc.)
are passed through as well, these metrics also apply to those
as well.

Table 1: Synchronous Get Performance, No Data Caching

Type # of Calls Time / call (µsec)

Direct 1,000 334
Reflected 500 594

Synchronous Gets (Cached) When the RS is actively
servicing asynchronous gets for a property, it stores the most
recently received value of that property internally. Serving
this data to synchronous get requests allows the RS to avoid
unnecessary round trips to the ADO. As such, there is no
expected latency associated with this operation when com-
municating with an RS. Again, data acquired through testing
supports this as shown in Table 2.

Table 2: Synchronous Get Performance, With Data Caching

Type # of Calls Time / call (µsec)

Direct 1,000 334
Reflected 1,000 317

In the test cases above, the average time when commu-
nicating with the RS is actually less than communicating
directly to the ADO. This may be due to factors such as
network congestion, routing latency within the network, and
other external factors.

Asynchronous Gets Asynchronous get benchmarks are
more complex than the prior benchmark, as they are encum-
bered by more than just simple latency. These asynchronous
calls must also factor in the number of clients handled and
the ability to deliver the requested data to those clients ef-
fectively.

Testing leveraged a property of asynchronous ADO data
delivery: timestamps. All data is timestamped by the device
prior to sending on the wire, which can be used by a client
to determine the true origination time of an update without
network or processing latency.

Table 3 displays a comparison of the latency encountered
during asynchronous delivery (arrival time − timestamp, in
milliseconds) between direct connections and reflected con-
nections. Each test establishes the listed number of indepen-
dent connections, and awaits 3 data deliveries. This is run 3
times for each connection count, and the latencies averaged.

Table 3: Asynchronous Get Delivery Delay

# Clients Direct (ms) Reflected (ms)

10 0.987 ± 0.259 1.997 ± 0.602
50 1.62 ± 0.679 4.10 ± 1.93
100 2.07 ± 0.612 5.14 ± 1.83
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Expectations Notably missing from the requirements
defined at the start of the paper are performance guidelines.
The RS architecture is being developed as an application-
level tool, foregoing support for real-time processing capa-
bilities or timing restrictions, so strict performance require-
ments were not paramount in the development process. This
is appropriate for tools such as GUIs and loggers which work
on human-level timescales, or which work asynchronously
to process data delivery. However, feedback mechanisms
which may need to react to real-time conditions are less
suited to utilizing reflection. The choice to use reflection
must be made on a case-by-base basis, strongly dependent
on the application and the context in which it is used, and
the architecture was designed such that applications may
opt-out if necessary.

FUTURE WORK
Broader rollout of the reflective system across the C-AD

complex will put the system’s scalability to the test. A ro-
bust, centralized configuration management system has been
proposed to simplify spawning and configuring RS instances.
This will likely be implemented as a Python web interface
using the FastAPI or similar. This could also serve as an
interface to inspection of RS clients, providing developers a
view into what is utilizing reflection and any potential issues.

Analysis of existing ADOs will be necessary in order to
leverage all potential benefits of the RS architecture. Now,
the get-caching functionality is opt-in, toggled by a runtime
flag. Certain ADOs have get-code, or specific functionality
such as polling hardware that is run when a get request is pro-

cessed. This conflicts with the RS get-caching feature as gets
to an RS fail to trigger this get-code on the underlying ADO.
Get-code is largely phased out in favor of asynchronous data
updates from hardware, but a more critical analysis must be
done to ensure RS deployment does not interfere with any
legacy ADOs which still leverage get-code.

The modularity of the reflective system may prove invalu-
able in providing a merging ADO and EPICS components
in the future EIC controls systems. The frontend and back-
end interfaces to the RS clear path to developing extensions
which allow for EPICS clients to communicate with RS
instances, and with RS instances to reflect IOCs. Addition-
ally, future frontend and backend interface may interoperate
to allow for a bridge between ADO and EPICS tools and
devices.
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