
Abstract
In today's data-driven scientific research landscape, the

management of vast amounts of data, together with low-
effort search capabilities, easy access and retrieval of
acquired data is crucial for enabling successful
collaborations, empowering all stakeholders to contribute
to data enrichment and fostering scientific advancement.
Metadata catalogues, where fields are extracted from
datasets and inserted into a searchable database, are pivotal
in accessing scientific data in such a landscape. Data
FAIRness qualities have become more and more important
as an increasing number of publishing entities require
transparency in published results and their provenance.
Metadata catalogues help facilitate FAIR principles by
enabling findability, and accessibility. With careful
curation of metadata fields, they can play a vital role in
interoperability.

We present SciCat a metadata catalogue designed to
meet the needs of the community of scientists carrying out
experiments and measurements. SciCat offers a scalable
and flexible solution that empowers researchers to
effectively manage, share, publish, and discover scientific
datasets, thereby fostering collaboration, increasing data
visibility and accelerating scientific progress.

INTRODUCTION
Metadata is defined as the data providing information

about one or more aspects of the data; it is used to
summarize basic information about data that can make
tracking and working with specific data easier. [1] It
includes, among many, information about the source of the
data, its acquisition process, responsible people and the
location on a computer network where the data was created
and collected.

Some metadata is auto-extracted from experimental
data, while others may include unique quantitative and
qualitative information produced or inferred post-
experiment. This information is essential for future data
utilization and may not be stored elsewhere. Metadata
varies in format and standards across research fields and
must capture data source dependencies. Additionally, the
metadata storage process is adapted to each facility's
existing infrastructure.

SciCat [2] has been developed with all these challenges
in mind and the aim of being the central metadata storage

solution, especially for Photon and Neutron facilities. It
started as an in-kind contribution and as an open-source
project between the European Spallation Source [3] and the
Paul Scherrer Institut [4] within the European Photon and
Neutron community. The goal was to develop a versatile
metadata catalogue supporting researchers across their
entire data lifecycle, as depicted in Fig. 1.

Figure 1: A typical researcher’s data journey. The orange
shapes are the interactions with SciCat.

Since its release, SciCat has been adopted by other
facilities, including MAX IV Laboratory [5], Rosalind
Franklin Institute [6], Advanced Light Source [7], the
German DAPHNE project [8], Bundesanstalt für
Materialforschung und prüfung [9] and the Shanghai
Synchrotron Radiation Facility [10]. Additional facilities
are rolling it out, for example, Synchrotron SOLEIL [11]
and Deutsches Elektronen-Synchrotron [12]. The project
has grown over the years with features and the support of
dedicated developers and users. It now includes
contributions from most of the adopting facilities. The
project has recently released the latest version (4.x) which
featured a complete rewrite of the backend and includes the
corresponding upgrades of the frontend.

We start by introducing SciCat's core components and
scalability for handling large volumes of metadata. Then,
we cover search functions, metadata record creation (aka
metadata ingestion), post-experiment metadata enrichment
(aka data curation), and automated data management
through jobs. The article will also discuss data publication,
DOI minting, collaboration, and integration with generic
and field-specific web search engines, such as the EOSC
data portals [13-15], Google Dataset Search [16] and, for
the latter, the PaNOSC data portal [17], developed during
the PaNOSC [18] and ExPaNDS [19] EU projects. † carlo.minotti@psi.ch

ENHANCING DATA MANAGEMENT WITH SciCat:
A COMPREHENSIVE OVERVIEW OF A METADATA CATALOGUE

FOR RESEARCH INFRASTRUCTURES

C. Minotti†, A. Ashton, S. Bliven, Paul Scherrer Institute, Villigen, Switzerland
F. Bolmsten, M. Novelli, T. Richter, European Spallation Source, Lund, Sweden
D. McReynolds, Lawrence Berkeley National Laboratory, Berkeley, CA , USA

M. Leorato, D. Van Dijken, MAX IV Laboratory, Lund, Sweden
L. Schemilt, Rosalind Franklin Institute, Didcot, UK

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02

Software

Data Management

THMBCMO02

1195

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

To enhance data dissemination, we present Python [20]
libraries for SciCat. Finally, we touch on future directions
for SciCat as envisioned by the community.

DESIGN OVERVIEW
The SciCat stack is organised following a microservice

architecture, where each service can be containerised and
configured to interact with the others and the pre-existing
facility infrastructure, following standard TCP [21]
communication protocols, such as HTTP(s) [22],
AMQP/MQTT [23, 24] and Web-Sockets [25]. All SciCat
services communicate with each other through HTTP(s).

The backbone of the ecosystem is the backend which
relies on a Mongo Database [26], the connection to which
must be configured as part of the setup. The backend is also
responsible for defining the data model which formalises
the scaffolding of the metadata fields, setting the required
ones and leaving great flexibility for customisation.

Data Model
Each SciCat entity is represented in a MongoDB data

model [27], with a subset of fields controlled by backend-
imposed validation rules (high-level fields). These fields
are predetermined during design, managed by the system,
and agreed upon by the SciCat community. They include
general information like record name, creation date, or the
associated experiment group. High-level fields can be
mandatory or optional and have consistent meanings across
SciCat adopters.

Scientific metadata, conversely, is a flexible structure
where users can save the relevant scientific metadata that
is important, for example, for the scientific process that the
dataset has been acquired for. This design gives the
required flexibility for science-specific data cataloguing
and is of great importance when it comes, for example, to
finding data or needing to check or replicate the
experimental conditions. User-defined validation of the
scientific metadata is being discussed in the core developer
group.

The main SciCat entities, and consequently MongoDB
collections [28] are Datasets, Proposals, Samples and
Instruments.

Datasets a dataset is a collection of data organized in
one or multiple files that have been acquired during the
same data acquisition within a scientific experiment with a
well-defined set of metadata that uniquely identifies the
acquired data, experimental settings and conditions. They
store the reference to the data files and additional
information like the title and descriptions, ownership,
samples, proposal, etc.

There are two dataset types: raw and derived. Raw
datasets originate from experiments, such as
measurements. Derived datasets result from post-
processing raw data and their metadata tracks
dependencies between the two.

Samples a sample is the physical piece of material that
has been used during the experiment. A sample can be used

to acquire one or more raw datasets. Raw datasets can
reference a Sample.

Instruments an instrument is the physical
instrumentation that has been used and where the sample
has been placed to acquire the data. As before, an
instrument is usually used to acquire many datasets. Raw
datasets can reference an Instrument.

Proposals in most research facilities, experimenters
need to submit the type of experiment(s) that they want to
run, which instruments they would like to use, which
sample they will use during the experiments and further
additional information. The comprehensive set of
information is called a proposal and is managed by a
dedicated platform. To simplify the management process,
SciCat allows to store the relevant information of the
proposals internally. Datasets can reference a Proposal.

Technologies
At the time of writing, the SciCat stack consists,

including the clients, of eleven services [29]. Of these
eleven services, the core ones, and most widely used are
the backend, encapsulating the core logic of the data
catalogue, and the frontend, presenting the information to
the users. In this section, we will only cover these two.

The backend, providing the RESTful API [30], user
authentication and authorization, data management and the
interface to the database, is the portion of SciCat running
server-side which operates on and stores the information in
the underlying database. It manages the user login and
enforces access permissions. It is developed in Typescript
[31] using the framework NestJS [32]. It uses MongoDB
as a database and the Mongoose ORM [33]. The backend
implements the classical REST API with a CASL [34]
model for authorization. It supports local administrative
accounts and OIDC authentication [35]. It supports all
CRUD [36] operations to operate on metadata records.
Records manipulation is controlled by the Data Transfer
Object, one per SciCat entity, which maps them to the
underlying data model.

The backend provides a Swagger UI [37] which exposes
the endpoints, detailing the expected input and output
formats and types. It also complies with the OpenAPI
initiative [38].

It can be configured using environmental variables.
Administrators can deploy it on bare OS or within a Docker
[39] container, often using Kubernetes [40]. The basic
setup involves configuring the database connection and the
site acronym. Additional customization is possible but may
require custom deployment and existing infrastructure,
such as integration with an OIDC-supported Identity
Access Management system [41].

The frontend, running in the client's browser, is a single-
page [42] application created using the Angular [43]
framework with TypeScript. It offers a user-friendly
interface for searching datasets and presenting information
based on user permissions. Users can also edit metadata
and create datasets. If configured, it can trigger external
actions, such as interactions with the backend jobs REST

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02

THMBCMO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1196

Software

Data Management

API. It primarily displays information and relies on the
backend REST API for computations.

Scalability
SciCat harnesses the power of Docker containers and

Kubernetes orchestration to achieve seamless scalability
and efficiency. By embracing the containerization
paradigm, SciCat empowers research institutions and
laboratories with a sophisticated solution, enabling them to
effortlessly store, organize, and retrieve metadata while
adapting to the ever-evolving demands of data volumes.

In this ecosystem, Docker containers provide flexibility
and consistency. These self-contained units encapsulate the
entire metadata catalogue along with its dependencies,
communicate through TCP, ensuring that each
environment remains isolated and coherent. This approach
not only simplifies the deployment process but also
guarantees that the application functions uniformly across
various setups.

SciCat publishes builds of its code as containers that can
be deployed in a variety of container deployment solutions.
The utilization of Kubernetes as the orchestration
framework amplifies SciCat's capabilities. Kubernetes
adapts the number of container instances depending on
load, thereby optimizing performance and resource
utilization. This elasticity becomes particularly crucial in
the realm of scientific data, where demand fluctuations are
common.

Message brokers serve as the gateway through which
data flows seamlessly into the catalogue, ensuring that no
information is lost or compromised, even when the input
rates surge dramatically. Interactions with the experimental
data or external applications can be managed through
message brokers, allowing for easy configuration of
connections between SciCat and external systems. Jobs,
for example, leverage this technology, as we will cover
later.

MongoDB as the underlying database ensures fast
querying together with powerful search capabilities. The
backend is configured to create indexes [44] for frequently
accessed fields, through which MongoDB can lower the
query response time. Replication [45] provides high
availability, by maintaining two or more copies of the data.
Sharding ensures the database scales horizontally, by
distributing the data according to ranges in user-defined
shard keys [46]. MongoDB can then load balance incoming
requests to the correct shard according to the range of the
requested key.

FEATURES AND FUNCTIONALITIES
Flexible Search and Discovery

SciCat employs powerful search capabilities, allowing
users to explore datasets using a range of search
parameters, including keywords, authors, data types, time
ranges, and locations.

There are two types of searches the user can perform:
text search, aka soft filter, and hard filters, namely
key=value conditions, for example, Keyword=”Neutron”.

Here is an example, as shown in Fig. 2, of a search with
both soft and hard filters:

Find all the datasets that are relevant to the query
“neutron with sample temperature”, contain the keyword
“Neutron” and have a scientific metadata sample
temperature equal to 0 Celsius.

Figure 2: Example of frontend search capabilities, showing
soft and hard filters applied on the datasets view.

Search queries are sent to the backend via REST
endpoints, each corresponding to a specific entity. There's
also a more robust "fullquery" route with enhanced
metadata querying capabilities, utilizing MongoDB
aggregation pipelines [47]. The OpenAPI specification
helps in selecting the appropriate endpoint parameters.

For backward compatibility, the query parameters and
headers of the endpoints of the SciCat entities follow the
syntax defined by the LoopBack 3 [48] framework for
querying data [49]. This allows specifying filtering
conditions, including related entities, sorting, pagination
and field extraction.

Ingestion
Usually, the process of creating a dataset, aka ingesting,

takes place when the data has been acquired and the files
are stored in the facility storage, which SciCat can then
reference.

Datasets can be ingested by submitting the information
as required by the dataset DTO [50] to the backend
endpoint, or through the frontend form. Users can create
datasets for their groups, while administrators can create
them for any group. This behaviour can be changed to
allow all users to create datasets or restrict this
functionality to only administrators.

Providing REST APIs for SciCat entities allows facilities
to create custom ingestion clients in their preferred
language, enhancing adoption due to varied metadata
ingestion needs.

Curation
SciCat is designed to enable users to easily annotate and

enrich their data with standardized and domain-specific
metadata fields, ensuring consistency and interoperability.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02

Software

Data Management

THMBCMO02

1197

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

When selecting a dataset, its scientific metadata can be
edited directly from the frontend if the user is one of the
owners or a platform admin.

Researchers, data curators and interested stakeholders
can update values, add new ones and remove obsolete ones
by clicking the “edit” tab, as shown in Fig. 3.

Figure 3: Example of editing dataset’s scientific metadata
from the UI. It can be modified, removed and added.

After the editing, SciCat keeps track of the changes, by
storing the versions of the metadata.

The frontend allows users to update single datasets
easily. However, it is advisable to use the backend for bulk
updates, more control, or changes involving multiple
datasets or entities.

Data Sharing and Collaboration
Researchers can share datasets and associated metadata

with collaborators or make them publicly available through
SciCat. With the advent of FAIR [51], publishing metadata
records has become an increasing practice in research
institutes, where data policies impose the publishing after
a fixed period of time. Many funding agencies impose
publishing as part of the eligibility requirements.

Each dataset has the authorisation properties: owner
group and access groups. The owner group is the group that
owns the dataset and can update it. The access groups are
all the groups that have access to this dataset, can view it
and download its data files.

A vanilla deployment allows two levels of dataset
access: ownership and access. If a more fine-grained
custom authorization model is needed, it can be achieved
by editing directly the CASL configuration.

To make a dataset public, the user can set "isPublished"
to true in the database record. This can be achieved using
the "Public" toggle in the frontend.

Datasets can be grouped as "Published Data" records.
The user can simply select the datasets, and click
"Publish", which opens a form. On completion, it registers
them with a DOI authority, becoming publicly accessible.
This can also be done through backend endpoints like other
cases.

Workflows
To enable operations on experimental data, jobs were

developed, the user can select a number of datasets and
select a job that should be executed.

Two common use cases are persisting data in a tape drive
storage system [52], and triggering the data retrieval to the
user’s laptop or a dedicated server for data analysis. The
frontend can be configured to support these actions, which
the user can trigger after having selected the datasets.
Figure 4 shows an example of retrieval action.

Figure 4: Example of a retrieval action from the UI. The
data is moved from the tape drive to an object store URL.

This sends a request to the backend’s jobs endpoint with
the essential information in the payload, including the
action and specific arguments like where to retrieve the
data. The source location was previously saved in SciCat
as part of the cataloguing process. Finally, it posts a
message to a message broker. The archiver/retriever clients
subscribe to the message broker, trigger the data movement
and notify SciCat of updates, by doing a PATCH to the
jobs/{id} endpoint. Notable examples of such clients are
based on AREMA [53] or Globus [54]. As this is an
asynchronous process, SciCat notifies users upon job
completion. Email notifications can be configured as part
of the backend installation.

Additional actions can be initiated by directly engaging
with the backend’s jobs endpoint. Facilities can configure
the triggered process by subscribing an appropriate client
to the message broker. This decoupling enhances
customization, and integration into the IT landscape, and
supports asynchronous processes, reducing user
interaction.

Integration with External Data Repositories
SciCat easily integrates with existing data federation

platforms which provides a unified interface to search and
access data across multiple platforms, including B2Find,
EOSC, openAIRE and Google Dataset Search.

Under the SciCat project on Github, multiple data
integration services can be found and installed to expose
the public data to the platform of choice.

New integration services can be developed and deployed
leveraging the extensive REST API and the accessibility of
the code.

During the PaNOSC & ExPaNDS projects, a service was
created to align SciCat and facility-specific metadata with
the project's naming schema. They also developed a web
portal and a distributed scoring system, enabling search
capabilities across multiple independent facilities with
distinct information sets.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02

THMBCMO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1198

Software

Data Management

Python Interfaces
In order to lower the barrier to data usage, the SciCat

collaborators' group have developed two different libraries
to interface SciCat with Python, Pyscicat [55] and
Scitacean [56].

Pyscicat is a Python library that aims to expose all the
SciCat backend endpoints, mapping each API endpoint to
Python functions.

Scitacean is a user-friendly high-level library. It is
designed to mask all the underlying SciCat API details
from the users and streamline the process to retrieve
datasets (including metadata and data files) and also create
new datasets (including data file upload) for the users.

FUTURE DEVELOPMENTS
We envision expanding the REST API and providing

ready-to-use aggregation specifically tailored for AI and
ML-established techniques. We would aim to implement
automated keyword assignment and metadata quality
evaluation.

We also aim to improve the search capabilities by
applying the latest Information Retrieval techniques and
relevance scoring. To address further customization, the
core collaborators feel the need to design and develop a
plugin framework, so site administrators can quickly
develop custom functionalities to meet their facility's
unique needs.

SciCat has proven its maturity with multiple instances
deployed in production in different facilities and labs. The
recent successful migration to the new implementation of
the backend V4.x has been beneficial in streamlining
CI/CD, improving automated testing, and increasing the
case tested considerably. It also helped us to discover areas
where both frontend and backend need to be improved and
allowed us to better plan the work ahead of us.

CONCLUSIONS
At each facility, the deployment of SciCat with its

versatility allowed it to quickly adjust each instance to the
ever-changing needs of the community served. The
deployments range widely in size, number of users, and
scientific domain proving that it is a scalable and flexible
tool.

The development of the two Python libraries and the
REST API that the backend implements have proven a
successful choice as they have fostered the development of
a number of third-party tools and enabled each facility to
write custom ingestors for the data produced on-premises
and in remote locations.

The flexibility, the worldwide adoption and the
established community, all are signals of a bright future
ahead of SciCat.

The upcoming features and the new members will allow
the product to strive even further, always answering the
community’s needs, always at the service of scientific
progress, and always devoting itself to improvements.

ACKNOWLEDGEMENTS
We would like to warmly thank all current and past

contributors, without whom the project would have
progressed significantly slower.

In particular, we convey our heartfelt gratitude to Dr.
Stephan Egli and wish him a happy retirement.

REFERENCES
[1] A Guardian Guide to your Metadata, theguardian.com
[2] SciCat, https://scicatproject.github.io
[3] ESS, https://europeanspallationsource.se
[4] PSI, https://www.psi.ch/en
[5] MAXIV, https://www.maxiv.lu.se
[6] Rosalind Franklin Institute, https://www.rfi.ac.uk
[7] ALS, https://als.lbl.gov
[8] DAPHNE, https://www.daphne4nfdi.de/english

 [9] BAM, https://www.bam.de/Navigation/DE/Home/
home.html

[10] SSRF, https://lssf.cas.cn/en/facilitiesview.
jsp?id=ff8080814ff56599014ff599b8550033

[11] SOLEIL, https://www.synchrotronsoleil.fr/en

[12] DESY, https://www.desy.de
[13] B2FIND, https://b2find.eudat.eu
[14] openAIRE, https://explore.openaire.eu
[15] EOSC Portal, https://eoscportal.eu
[16] Google Dataset Search,

https://datasetsearch.research.google.com
[17] PaNOSC, data portal, https://data.panosc.eu

[18] PaNOSC, European Union's Horizon 2020 research and
innovation programme under grant agreement No. 823852,
https://www.panosc.eu

[19] ExPaNDS, European Union’s Horizon 2020 research and
innovation programme under grant agreement No 857641,
https://expands.eu

[20] Python, https://www.python.org

[21] Transmission Control Protocol, in Wikipedia,
https://en.wikipedia.org/wiki/
Transmission_Control_Protocol

[22] HTTP, n Wikipedia,
https://en.wikipedia.org/wiki/HTTP

[23] Advanced Message Queuing Protocol, in Wikipedia,
https://en.wikipedia.org/wiki/Advanced_Messa
ge_Queuing_Protocol

[24] MQTT, in Wikipedia,
https://en.wikipedia.org/wiki/MQTT

[25] WebSocket, in Wikipedia,
https://en.wikipedia.org/wiki/WebSocket

[26] MongoDB, https://www.mongodb.com

[27] SciCat, Data Model,
https://scicatproject.github.io/documentatio
n/Development/v4.x/Data_Model.html

[28] MongoDB collections, https://www.mongodb.com/
docs/manual/core/databasesandcollections

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02

Software

Data Management

THMBCMO02

1199

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

[29] SciCat Github Organisation,
https://github.com/SciCatProject

[30] REST, in Wikipedia,
https://en.wikipedia.org/wiki/REST

[31] Typescript, https://www.typescriptlang.org

[32] NestJS, https://nestjs.com
[33] Mongoose, https://mongoosejs.com
[34] CASL, https://casl.js.org/v6/en
[35] OpenID Connect, in Wikipedia,

https://de.wikipedia.org/wiki/OpenID_Connect

[36] Create, read, update and delete, in Wikipedia,
https://en.wikipedia.org/wiki/Create,read,_u
pdate_and_delete

[37] Swagger UI,
https://swagger.io/tools/swaggerui

[38] OpenAPI initiative, https://www.openapis.org

[39] Docker, https://www.docker.com

[40] Kubernetes, https://kubernetes.io
[41] Identity management. (2023, August 30). In Wikipedia,

https://en.wikipedia.org/wiki/Identity_manag
ement

[42] Single-page application. (2023, September 27). In
Wikipedia, https://en.wikipedia.org/wiki/
Singlepage_application

[43] Angular, https://angular.io

44] MongoDB, Indexes,
https://www.mongodb.com/basics#indexes

[45] MongoDB, Replication,
https://www.mongodb.com/basics#replicasets

[46] MongoDB, Sharding,
https://www.mongodb.com/basics/sharding

[47] MongoDB, Aggregation Pipelines,
https://www.mongodb.com/basics#aggregation
pipelines

[48] LoopBack 3, https://loopback.io/lb3
[49] LoopBack 3, Query Data, https://loopback.io/

doc/en/lb3/Queryingdata.html
[50] Data transfer object. (2023, July 20). In Wikipedia,

https://en.wikipedia.org/wiki/Data_transfer_
object

[51] FAIR,
https://www.gofair.org/fairprinciples

[52] Tape drive, In Wikipedia,
https://en.wikipedia.org/wiki/Tape_drive

[53] AREMA, https://www.ibm.com/products/arema
archiveandessencemanager/details

[54] Globus, https://www.globus.org
[55] Pyscicat,

https://scicatproject.github.io/pyscicat

[56] Scitacean,
https://scicatproject.github.io/scitacean

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02

THMBCMO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1200

Software

Data Management

