©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THMBCMOO1

NEW DEVELOPMENTS ON HDB++, THE HIGH-PERFORMANCE DATA
ARCHIVING FOR TANGO CONTROLS

D. Lacoste, L. Banihachemi, R. Bourtembourg, ESRF, Grenoble, France
S. Rubio-Manrique, ALBA-CELLS, Cerdanyola del Valles, Spain
J. D. Mol ,ASTRON, Dwingeloo, Netherlands
L. Pivetta, G. Scalamera, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
J. Forsberg, MAX IV Laboratory, Lund, Sweden
T. Juerges, SKA Observatory, Jodrell Bank, United Kingdom

Abstract

The Tango HDB++ project is a high performance
event-driven archiving system which stores data with
micro-second resolution timestamps. HDB++ supports
many different back-ends, including MySQL/MariaDB,
TimescaleDB, a time-series PostgreSQL extension, and
soon SQLite. Building on its flexible design, with the
latest developments supporting new back-ends is even easier.
HDB++ keeps improving with new features, such as batch
insertion, and by becoming easier to install or setup in a test
environment, using ready to use docker images and striving
to simplify all the steps of deployment. The HDB++ project
is not only a data storage installation, but a full ecosystem
to manage data, query it, and get the information needed. In
this effort a lot of tools were developed to put a powerful
back-end to its proper use and be able to get the best out of
the stored data. Moreover, the latest developments in data
extraction, from low level libraries to web viewer integration,
such as Grafana, will be presented, pointing out strategies
in use in terms of data decimation, compression and others
to help deliver data as fast as possible.

INTRODUCTION

Since about ten years, the TANGO HDB++ archiving
system is developed as a collaborative project between
different institutes using Tango Controls (Alba, Astron,
Elettra, ESRF, INAF, MaxIV, SKAO,...).

HDB++ provides tools and components to store Tango
attribute values into the database back-end of your choice,
with micro-second resolution timestamps. Tools and
libraries are also provided for the extraction and visualization
of the stored data, for the configuration of the attributes to
be stored and for the monitoring of the archiving system
health. The following back-ends are currently supported:
MySQL/MariaDB, PostgreSQL, TimescaleDB and SQLite.
New Database back-ends can be easily added, thanks to
HDB++ modular design.

Design

The EventSubscriber Tango device subscribes to a list of
Tango attribute events and stores the attribute values received
with these events into a database. The ConfigurationManager
Tango device helps managing the list of attributes to be stored
in the historical database.

THMBCMOO01
190

These two Tango devices, written in C++, use the libhdb++
abstraction library to decouple the interface to the database
back-end from the implementation. HDB++ provides
the libraries implementing the libhdb++ interface for the
supported back-ends. Thanks to this design, the same tools
can be used to manage and monitor the archiving system
whatever back-end is used. Adding a new database back-end
is quite easy, because it is just matter of creating the library
implementing the libhdb++ interface for the new back-end.

DATABASE BACK-ENDS

One of the main strengths of HDB++ is the use of
proven database engines for storage back-ends. Building an
abstraction layer to interact with different back-ends is a key
strategy that allows to select the preferred back-end, based
on performance, system footprint, preferred technology
or simply in-house expertise. The HDB++ community is
currently supporting five different back-ends, in production
in the various institutes, facing additional requests to support
new ones. A small comparison of the different back-ends
is presented in Fig. 1. A skeleton project is available to
developers to help supporting new back-ends, standardizing
the building steps and making the integration simpler.

MariaDB/MySQL

MySQL has been the database engine used for the Tango
Database server since the very first releases of Tango due to
its versatility and ease of installation. The fully compatible
open source MariaDB variant is available in all major
operating systems and Linux distributions, becoming the
default option for small installations. MySQL/MariaDB
also demonstrated performance and scalability on large
installations, like ALBA or Elettra synchrotrons, where it is
used to support the whole archiving system for accelerators
and beamlines. MySQL/MariaDB installations support
different schema, either using the legacy schema or the new
schema introduced in HDB++. Deployment can use either
one single database in a single host, database clusters or
multiple databases. Using different API’s like ProxySQL
or PyTangoArchiving helps configuring and extracting data
from the databases in a transparent way.

PostgreSQL/TimescaleDB

TimescaleDB is a PostgreSQL extension for time series. It
manages partitioning and offers a lot of features dedicated to

Software

Data Management

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

time series. There are actually two implementation libraries
to support insertion in TimescaleDB and PostgreSQL, with
the difference in the underlying schema used. Both libraries
could be used with one back-end or the other, provided that
the schema is correct. TimescaleDB back-end is actively
developed. The regular maintenance happens, to follow
updates in the dependencies, namely cpptango and libpgxx,
for interfacing with the database. Moreover, additional
work is extending HDB++ support of the feature set
provided by TimescaleDB, such as the powerful compression
engine. More detail will be provided in the long-term
archiving strategies section. Another interesting feature
is the introduction of jobs in TimescaleDB to run some
processing on the data. TimescaleDB jobs will replace
some scripts that currently run outside of the database
engine to perform some periodic operations. This opens
the door to interesting ideas, such as running algorithms
for data decimation directly in the back-end, for maximum
performance.

SQLite

The latest addition to the list of HDB++ supported
back-ends, SQLite has been requested to help deploy faster
test setups for HDB++. SQLite has been an interesting
exercise to test in real condition the effectiveness of the
skeleton provided to develop new back-ends. Adding the
support for SQLite faced two main challenges: the definition
of the schema and the implementation. Different HDB++
back-ends share a similar schema, as far as possible, but
not all the features are supported, such as arrays, nor data
types. Therefore, a schema working with SQLite has been
designed. Exploiting a well defined and compact interface,
and a project ready with only some gaps to fill, reduced the
burden and allowed to focus on learning the intrinsics of
SQLite insertion library. The SQLite back-end, outcome of
a fruitful internship at the ESREF, is still work in progress,
with the need to refine the project and add some test, but can
be already used to quickly setup a test environment.

Elasticsearch

Support for Elasticsearch has been added as a proof of
concept, but it is no more maintained. Elasticsearch HDB++
back-end is currently deprecated.

Cassandra

Cassandra support in HDB++ is deprecated.

DEPLOYMENT

Repositories

HDB++ related projects can be found on Gitlab [1]. Most,
if not all, the projects document how to build and install
the software. For convenience, the data insertion libraries
are usually done with two repositories, one containing the
code for the insertion library itself and a single repository
to install a full system directly. Taking MySQL as example,
the repository with the code for the library is available [2],

Software

Data Management

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THMBCMOO1

DBBackend| ____Pros | _ Cons |

Good for small DB Not optimized for arrays

ProxySQL can be used to redirect queries to master| Bad performance if DB is too big
JMG riaDB slave or other MySQL/MariaDB DBs

Legacy DB schema compatible with old TANGO

HDB tools

High Availability for write datacenter Not good with arrays
@?mm Cassandra HDB++ backend could be used in theory Big queries could bring down several

with ScyllaDB nodes because of Java Garbage
(53]
Same as PostgreSQL + optimized for time series,

Collector
Native support for arrays, so good performance of
@ Timessih scalable, automatic hypertables creation, extended

Bad performance if DB is too big
queries involving arrays
Ability to query individual elements of an array
Chunk level data reordering operation
MUST be run regularly to guarantee
API for time series, automatic continuous good query performance
aggregation, gap filling

e Advantages of ELK stack (Kibana viewers,...)
i Flexible schema

Requires a lot of memory
No security

Figure 1: HDB++ back-ends pros and cons.

together with another repository designed to build the entire
system [3]. The mono-repository builds the insertion library
specific to the selected back-end and the hdbpp-es and
hdbpp-cm device servers. It contains as well the schema
for the database and the instructions to setup the database. A
recipe to build a ready to use docker image with the back-end
is available. The mono-repository is the preferred place to
start experimenting with HDB++.

Conda Packages

Several HDB++ Conda packages can be installed from
conda-forge [4], only for Linux x86_64 architecture at the
moment. Available packages are listed below:

¢ libhdbpp: the interface library for HDB++,

e libhdbpp-timescale: HDB++ library for TimescaleDB

database backend,

* hdbpp-es: HDB++ EventSubscriber Tango device,

* hdbpp-cm: HDB++ ConfigurationManager Tango

device.
hdbpp-es and libhdbpp-timescale debug symbols have
been moved to separate packages, named respectively
hdbpp-es-dbg and libhdbpp-timescale-dbg, keeping the main
packages small but allowing users to debug by just installing
these packages.

CONFIGURATION

HDB++ is a complete ecosystem that allows to set up an
an archiving system for any Tango based control system
painlessly providing a set of tools for configuration and
management.

HdbConfigurator

HdbConfigurator, shown in Fig. 2, is the legacy
configuration manager for HDB++. It is a java application,
that helps configuring attributes within the control system
to enable archiving. HdbConfigurator, although not strictly
necessary to set up archiving, can swiftly orchestrate the
configuration of Tango Attributes for the Tango devices to be
archived and, at the same time, the proper EventSubscriber
device.

Archwizard

For monitoring and troubleshooting a running HDB++
installation, MAX IV developed a simple web application

THMBCMOO01
n91

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

e hdbpp-configurator.3.27-SNAPSHOT [P
File View Tools_help

a0 subseribers: [WDBs 1 statistics |+

4% HDB++ Confi 't

d Attributes | 0 Stopped Attributes

S Y Y 7
TANG, acs.esrt.fr:10000

Figure 2: HdbConfigurator GUIL

dubbed Archwizard [5], which lists managers, archivers and
archived attributes, and allows inspecting settings and errors,
with search and filter options.

yaml2archiving

Since HDB++ archiving configuration can be quite large,
and is stored in the Tango database, MAX IV introduced
an additional option for handling the configuration. A file
in YAML format can be used to describe the archiving
configuration, e.g. which Tango device Attributes have to be
archived and their settings; a script [6] is available to process
the YAML file and update the proper archiver configuration.

VIEWERS / EXTRACTORS

Grafana

With powerful features but keeping simplicity at its
core, Grafana quickly became a de-facto standard for
data visualization and dashboards interface using web
technologies. Once again, the adoption of widely used
database engines as back-end proved useful, as Grafana
natively supports all the HDB++ back-ends. Grafana
integration has been straightforward; exploiting the web
interface it is easy to setup a Grafana instance to connect to
HDB++ back-end and provide basic data visualisation. The
community is now working on HDB++ dedicated synoptic,
based on Grafana, or more generic data viewers; Grafana
support is still in the development stage and not ready for
production.

eGiga2m

eGiga2m is a web graphic data viewer. Data are supposed
to be organized as a set of unevenly spaced time series. Time
series are taken from a web service, which typically extracts
data from a structured database, or can be loaded from
a CSV file; drag-and-drop on the plot area is supported.
HDB++ is one of the possible data sources, in particular
MySQL/MariaDB schema and TimescaleDB schema used
in HDB++ are supported. Each time series is identified by a
unique name and by an ID. Time series names are displayed
in a hierarchical tree, whose branches are dynamically

THMBCMOO01
1n92

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THMBCMOO1

loaded when the tree is expanded. Two vertical axes are
supported, furthermore correlation is also possible assigning
time series to the horizontal axis. An example is shown in
Fig. 3. Users can configure a wide range of parameters. All

ET—

Figure 3: eGiga2m temperature plot with related alarm state.

settings are interfaced through URI parameters. This allows
to send unique links to a specific graph, or exported files,
and eGiga2m can be included, embedded or used by external
resources. Configurations include:
* two decimation algorithms: maxmin and downsample,
e three graphic libraries: Chart.js, Flot Charts,
Highcharts,
 several chart styles: scatter, line, spline, etc.
Some improvements available in the last release are:
* support for TimescaleDB HDB++ back-end
¢ improved information in the chart tooltips, such as
number of decimated samples displayed, total number
of samples in the period, sample rate per second and
query time

Archviewer

The Archviewer [7] is a web application for viewing
HDB++ data archived in TimescaleDB. It supports multiple
databases, and has a simple interface supporting ’pan/zoom”
mouse operations. It relies on the database aggregation
features to decimate data when its size reaches a given
limit. Currently supported aggregation is min, max and
average. It also supports downloading the plotted data as
TSV or JSON. All parameters are stored in the URL to
enable sharing and bookmarking. Archviewer currently only
supports displaying scalar attributes, but spectrum attribute,
e.g array, support is planned.

Hdbpp-Viewer

Hdbpp-viewer [8] is one of the first viewers, developed
for HDB first and then extended to support HDB++.
It is a standalone java application, as can be seen in
Fig. 4, built on top of the java extraction library [9].
Hdbpp-viewer is available on maven central, thanks to the
work done in the tango community to upload all java tools

Software

Data Management

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

to maven central. It supports some HDB++ back-ends,
like MariaDB/MySQL, TimescaleDB, and Cassandra.
Advanced features are available for TimescaleDB, such
as support for continuous aggregates and efficient index
in array extraction. Hdbpp-viewer supports multiple data
visualization on the same plot, two vertical axes, table view,
CSV export, plot zoom, data selection and much more.

Figure 4: hdbpp-viewer attribute plot.

pyhdbpp / AbstractReader

PyTangoArchiving python API and Reader objects have
been used at ALBA Synchrotron to extract data from
MySQL/MariaDB HDB and HDB++ archiving systems,
either extracting raw data or linking graphical applications
to the storage engine. Starting 2020, a new Python3 API,
able to extract data from any HDB++ back-end, miming the
approach adopted for the archivers that support different
back-ends, has been developed. The AbstractReader
class, provided by the python-pyhdbpp module, defines
a minimum set of methods to be implemented for each
back-end in order to provide data inspection, extraction and
decimation from any Python application. The library ships
with MySQL, MariaDB, PostgreSQL and TimescaleDB
support out-of-the-box and encourages developers to
write their own Reader objects to extract data from any
other HDB++ back-end, or even other archiving systems.
Moreover, the new multi-db schema allows to setup multiple
database Reader objects dynamically, allowing queries in
parallel to different engines.

Taurus

Latest releases of Taurus, the python graphical
interface toolkit for Tango Control Systems, have
shifted from Qwt / PyTangoArchiving plotting tools
to pyqtgraph / pyhdbpp. Thanks to the new python
API all graphical tools that used to be available for
MySQL/MariaDB archiving systems are now available
for any HDB++ back-end. Those tools include not only
plotting but database browsing, using the tango browser

Software

Data Management

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THMBCMOO1

tool to explore the attributes available in Tango and HDB++
databases.

LONG-TERM ARCHIVING STRATEGIES

Compression
TimescaleDB

TimescaleDB development is quite active and offers
interesting features for time series databases. Compression
is a useful feature for large databases. TimescaleDB team
boasts some interesting numbers in terms of compression,
reproduced on test, as can be seen in Table 1 and production
setups: compression ratio is good for scalar quantities, whilst
the performance on array is much lower, with almost no
compromise in terms of speed. TimescaleDB compression
algorithm is so efficient that, on large data-sets, the time
required to query the compressed data and uncompress is
shorter than the time required to query the uncompressed
data. In the production setup at the ESRF no impact on
performances has been measured, while a lot of space is
saved.

and Post-Processing in

Table 1: Compression Ratio

Data type Compression ratio Speedup
Scalar double 11.14 0.69
Array double 1.54 0.98

With release 2.0 TimescaleDB introduced the concept of
Jobs. It is a generic mechanism to run a procedure within the
back-end. Recurring tasks, such as continuous aggregation,
chunks management, compression can conveniently be run
as jobs. As already noted, within HDB++ some periodic
tasks run as cron jobs: this is, for instance, how the Time
To Live (TTL) feature is implemented, requiring extra
infrastructure to run. HDB++ TTL feature is a perfect match
for TimescaleDB jobs. TimescaleDB jobs design is generic
enough to be adopted by developers for their own purposes.
A custom procedure in PostgreSQL can be defined to run as a
TimescaleDB job on a certain schedule. Some development
has been done for data post-processing using this approach.

The amount of available data is increasing day by day.
Extracting large amounts of data can become a challenging
operation, in particular for visualisation purposes. Data
decimation is an efficient and elegant solution that can be
applied at different levels, but one of the most efficient is to
decimate data running a post-processing job in the back-end.
This approach keeps the data in its usual place, ready to be
queried by the users. Currently TimescaleDB decimation
Jjob for HDB++ has been setup to generate decimated data
while keeping the raw data as well, but different strategies
can be easily implemented, such as pushing the decimated
data to cold storage on to another database.

Multidatabase Setup

HDB++ is easily scalable by design; adding an
EventSubscriber to handle more events is as simple as

THMBCMOO01
n93

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

o

©)

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

deploying a new Tango device. Concerning the back-end,
it is possible to use more than one database to separate
the data by subsystem or for performance reasons. Not all
extraction tools are able to manage multiple back-ends, but
the generic Python extraction tool, pyhdbpp, provides this
support. This approach is convenient, as it separates the
concerns effectively. System administrators can set up the
databases as required, whilst the user can access the data
in a transparent way. Exploiting this approach, interesting
scenarios emerge, such as moving data between different
clusters, with different specification, while decimating data
in the process or setting up a small dedicated cluster
to host applications with high archiving data rates but
short time-to-live. The multidatabase setup enables great
flexibility while providing the same interface to the users.

COLLABORATION

The HDB++ developers and users meet online on a regular
basis, once every two months, to discuss issues share tools
and methodology [10]. These meetings are often superseded
by in person meetings where time is used to discuss the
pressing issues. In 2023, Special Interest Group (SIG)
meetings have been introduced within the Tango community;
one SIG meeting, hosted by Astron in the Netherlands in
November 2022, was dedicated to HDB++. The future
roadmap of Tango archiving system has been discussed
and the idea for the development of the SQLite back-end
proposed. The HDB++ group is actively participating
in the Tango community meetings, presenting the latest
developments and animating workshops and discussions.

CONCLUSIONS

Using the strength of existing database engines, the
HDB++ project built a complete ecosystem of tools and
practices to ingest, manage, and extract data from the
supported databases. More than a project, HDB++ is a
thriving collaboration between several different institutes,

THMBCMOO01
N94

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-THMBCMOO1

which enabled to create a free, configurable solution to set up
archiving for Tango as needed, with focus on solid back-ends,
raw performance, simplicity of use, lightweight deployment
and user requirements. HDB++ is improving through
constant interaction within a free and open collaboration:
your contribution is welcome.

ACKNOWLEDGEMENTS

The authors would like to thank the Tango Controls
HDB++ community members for their contribution and
great ideas.

REFERENCES

HDB++ repository on gitlab, https://gitlab.com/
tango-controls/hdbpp/

(1]

[2] HDB++ MySQL insertion library repository on gitlab,
https://gitlab.com/tango-controls/hdbpp/

libhdbpp-mysql

[3] HDB++ MySQL mono-repo on gitlab, https://gitlab.

com/tango-controls/hdbpp/hdbpp-mysql-project
[4]

Conda-Forge Community, “The conda-forge Project:
Community-based Software Distribution Built on the conda
Package Format and Ecosystem”, Zenodo, 2015.

doi:10.5281/zenodo.4774216

Archwizard repository, https://gitlab.com/tango-
controls/hdbpp/archwizard

(5]

[6] yaml2archiving repository, https://gitlab.com/tango-

controls/hdbpp/yaml2archiving

[7] Archviewer repository, https://gitlab.com/tango-

controls/hdbpp/archviewer

[8] hdbpp-viewer repository, https://gitlab.com/tango-

controls/hdbpp/hdbpp-viewer
[9] libhdbpp-extraction-java repository, https://gitlab.
com/tango-controls/hdbpp/libhdbpp-extraction-
java
[10] hdbpp collaboration minutes repository, https://gitlab.

com/tango-controls/hdbpp/meeting-minutes

Software

Data Management

