
SECURE ROLE-BASED ACCESS CONTROL FOR RHIC COMPLEX*

J. Morris, A. Sukhanov†, Brookhaven National Laboratory, Upton, NY, USA

Abstract
This paper describes the requirements, design, and

preliminary implementation of Role-Based Access
Control (RBAC) for the RHIC Complex. This system is
designed to protect from accidental, unauthorized access
to equipment of the RHIC Complex. It also provides
significant protection against malicious attacks. The role
assignment is dynamic: device managers always obtains
fresh roles for restricted transactions. The authentication
is performed on a dedicated role server, which generates
an encrypted token, based on user ID, expiration time, and
role level. Device managers are equipped with an
authorization mechanism which supports either Static or
Dynamic assignment of permissions for device
parameters. Transactions with the role server take place
atomically during secure set() or get() requests. The
system has small overhead: ~0.5 ms for token processing
and ~1.5 ms for network round trip. A prototype version
of the system has been tested at the RHIC complex since
2022. For easy transition, the access to device managers
which do not have authorization mechanisms, can be done
through dedicated intermediate shield managers.

INTRODUCTION
The Control System of the RHIC complex [1] provides

the operational interface to the RHIC collider and to a
long chain of particle accelerators (AGS, Booster, Linac,
EBIS, Tandem, CeC, LEReC), including beam injection
and extraction lines and beam instrumentation systems.
The number of controlled and monitored parameters
exceeds 1 million.

Role-Based Access Control (RBAC) is an approach that
limits system access to authorized sets of users [2].
Within an organization, roles are created for various job
functions. The permission to perform certain operations
is assigned to specific roles. Members of staff (or other
system users) are assigned particular roles, and through
those role assignments acquire the permissions to perform

particular system functions. RBAC is a preventative and
therefore inexpensive way to protect accelerator
equipment. Other machine protection systems such as
interlocks are reactive. Once triggered it can be expensive
to recover operations. RBAC can prevent unauthorized
users from making incorrect settings which can adversely
affect accelerator equipment. RBAC can also be used to
ensure machine stability during a run. Once the
equipment is fine-tuned and beam is in the machine, an
erroneous setting can disrupt operations for hours and
valuable data can be lost. RBAC can restrict access to
critical settings to a designated set of operators or system
experts, reducing the likelihood of an incorrect setting.
RBAC role assignments can also be used to determine
who is authorized to run control applications.

RHIC CONTROLS SOFTWARE
The RHIC Control System[3] is closed source software,

developed at BNL in the 1990s. The original software was
all written in C++ and C. The system architecture has
stood the test of time with few changes in
communications protocols. Java and Python development
suites are now part of the Control System. Figure 2 shows
the architecture of device control in the RHIC Control
System. The accelerator equipment is controlled by
Accelerator Device Object (ADO) software modules.
ADOs are hosted by dedicated Front-End
Computers(FECs) or by ADO Manager processes that can
run on many different hardware platforms. An ADO
contains a set of related control parameters (similar to
EPICS PVs[4]). The communication protocol with clients
is RPC[5]. The transport layer is TCPIP. The ADO
handles a limited set of requests: info(), get(), set() and
subscribe(). The name service, which allows clients to
find ADOs of interest in the network, is provided by the
ControlsNameServer (CNS).

DEVICE ACCESS CONTROL AT RHIC
The device access policy in the RHIC complex has

been based mainly on network restrictions and access

Figure 2: RHIC Controls client-server model.

Figure 1: RHIC Complex.

__

* This work was supported by Brookaven Science Associates, LLC
under contract No.DE-SC0012704 with the U.S. Department of Energy.
† sukhanov@bnl.gov

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO05

TH2AO05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1150

Software

Software Architecture & Technology Evolution

monitoring rather than access prevention. Though the
accelerators in the complex are primarily operated from
the Main Control Room, device settings may be sent from
other locations in the controls network. Meticulous
measures are applied to hardware network security. All
wired networking equipment is isolated from the rest of
the lab behind the strictly maintained department firewall.
Each new device, before being wired to the network,
passes a rigorous certification process.

Modifications of editable parameters are logged by a
Set History System [6], which stores information about
each setting (who, when, what, from where). The system
logs several hundred thousand modifications per day with
no noticeable impact on application performance.
Powerful query tools allow Main Control Room operators
to monitor the system and discover unexpected changes.

Software access restriction is provided for certain
critical parameters like beam permit system configuration,
using a file-based system which only allows unlocking of
the parameters only by a small set of operations experts.
The system has been very effective but requires non-
trivial custom software for each participating system. It is
not easily extensible and not considered to be a viable
alternative to RBAC for the full control system.

ROLE-BASED ACCESS CONTROL
Role-based access control, as formalized in 1992 by

David Ferraiolo and Rick Kuhn [7], has become the
predominant model for advanced access control. The
RBAC model developed at LHC [8] was widely adopted
at other accelerator facilities. The LHC model requires an
intermediate layer (Application Server) between the
application and device server. The access control
restriction process of the LHC model consists of the
following steps:

Authentication:
• User sends a request from the Application to be

authenticated by the RBAC server.
• RBAC authenticates user using his user name

and password or location.
• RBAC returns token to Application.

Authorization:
• Application sends token to the Application

Server.
• The Application Server verifies token signature

once, and uses the credentials for every
subsequent request.

• If access is authorized, the request propagates to
device server.

The result of every authorization process, both positive
and negative, is logged by the Application Server.
The access rules are managed by a dedicated data base.
An equipment specialist has to specify the following
fields to define an access rule: 1) device class, 2) property
name, 3) device name, 4) role name, 5) application name,
6) location name.

RHIC RBAC
RHIC Controls software allows the implementation of a

simpler and more flexible and secure RBAC due to

• full control over communication protocol
• standardized access to all devices through the

ADO software modules
• existing Set History Service which already

handles the logging function for settings

The following were defined as goals of the RHIC RBAC
design:

• Authorization should be primarily based on user
login account.

• All controls clients must participate in the RBAC
system.

• The restriction mechanism must have minimal
impact on performance of sending settings.

• The restriction mechanism can not interfere with
reliability of sending settings.

• RBAC protections can be built into ADO
Managers in a standard way so that behavior is
consistent across ADO Managers and
development effort is kept to a minimum.

• The management of the system should be kept as
simple as possible, particularly from the point of
view of control room operators.

• An emergency override capability must be
available to a lead operator in the Main Control
Room.

Design Overview
User authentication in the RHIC RBAC design relies on

login administration, which is managed and monitored by
site system administration and compliant with Cyber
Security requirements for national laboratories. No
additional authentication is required for RBAC
participation. Group access to operational consoles by
operator/shift workers is controlled by a ScreenLock
process [9] which meets Cyber Security requirements.
Once authenticated at a group console, credentials of the
shared group account will be used, which is appropriate
for operators working in control room environments.

The assignment of user roles is performed by the
dedicated role server which is called TokenMan. The
determination of whether access to specific device
parameters is granted is made at the level of each
individual ADO Manager.
 The authorization flow of a device setting in our
prototype RHIC RBAC system is illustrated in Fig. 3. It
involves the following steps:

1. The client Application during its start-up extracts
the user ID and group ID of the login account.

2. The user ID and group ID are placed in the
authorization credentials structure (Cred) of
every RPC packet which is sent from the
application to an ADO server. This is in addition

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO05

Software

Software Architecture & Technology Evolution

TH2AO05

1151

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

to the standard fields of the RPC packet which
contain information about process ID, program
name and version.

3. The ADO Manager retrieves the Cred structure
from the RPC packet and sends it to the
TokenMan.

4. TokenMan evaluates the user credentials and
assigns one or more user roles based on the
credentials. It encrypts role information in a
token and sends the token back to the ADO
Manager.

5. The ADO Manager decrypts the token to retrieve
the user roles.

6. The transaction with the device will only be
allowed if one of the active roles belongs to the
list of roles that are granted permission to
access this setting.

User Roles
The translation from login credentials to user roles is

performed by TokenMan, a Python-based ADO Manager
which has access to role tables (internal or remote). It
generates encrypted tokens based on the credentials
passed in requests from ADO Managers.

Users may have multiple roles. The roles are stored in
the user-keyed dictionary and have the following fields:
‘Basic Roles’, ‘Elevated Roles’ and ‘Expiration’. The
‘Basic Roles’ are the set of roles which users are assigned
for routine operations. These are assigned based on user
login credentials. To simplify management, it is expected
that common roles will be defined that align with login
group assignments (e.g. operator and developer roles).
Special roles can be assigned to system experts or lead
operators. It is envisioned that these role assignments will
be maintained in a database that will be accessed by
TokenMan.

An extremely limited guest role may be assigned to
allow guest or novice users something close to a read-
only view of the control system. It is envisioned that
guest level protection will be applied at the application
level rather than by preventing each setting at the ADO

Manager level using the RBAC permission mechanism
defined in this paper. This can be done by restricting
which applications can be run or by putting applications
into read-only mode based on the RBAC defined role of
the user.

‘Elevated Roles’ are roles that are assigned for special
operations that take place during a limited period of time.
It is envisioned that Main Control Room operators would
manage the assignment of Elevated roles to a selected set
of users as well as the determination of when those
elevated roles expire. For example, a developer might be
elevated to the role of operator or system expert during a
short term system commissioning period.

Permission handling in ADO Manager
Permissions are the rules which define which user roles

will be granted access to the restricted parameters of an
ADO manager. Two types of permissions are supported
by the ADO Manager API:

• Static: Permissions are built into the manager code or
held in static device configuration.

• Dynamic: A list of permitted roles may be held in a
special manager parameter named ‘permissions’. An
authorized user can change the permitted user roles
by changing the values in this list. The ‘permissions’
parameter of the ADO manager could contain a
reference to a parameter of another ADO, which acts
as a centralized permission server. This would allow
the permitted roles for a large group of managers to
be managed in a centralized location. Note that any
parameters that are used for dynamic control of
permissions (local or centralized) must themselves be
protected by RBAC.

In order to keep system management simple, it is
expected that static permission assignment will be used
for most protected parameters. Elevating a user’s role is
expected to be the more common method of dynamically
providing access.

In testing to date, permission evaluation time is less
than 2 ms, which includes 0.5 ms of token processing and
~1.5 ms of network round-trip to TokenMan. That
performance impact is considered acceptable but this will
be evaluated further as RBAC is deployed more widely.
The potential impact of TokenMan transactions on the
reliability of sending settings also has to examined.

Comparison with the LHC RBAC model
The primary difference between our proposed RHIC

RBAC system and the LHC model is the fact that there is
no dedicated authentication server. Client applications
extract user, group and program ID using system calls.
This is integrated into the RHIC Controls client API.

Acquisition of the role definition token is done on the
server side (ADO Manager). This slightly increases the

Figure 3: Authorization flow of the RHIC RBAC.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO05

TH2AO05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1152

Software

Software Architecture & Technology Evolution

transaction time at the server by the round-trip time to the
TokenMan but the performance degradation appears to be
acceptable. The process of gaining permission in the
ADO Manager is stateless and dynamic. The manager is
not tracking the expiration time of the token. It simply
gets the user roles which are actual at the time of
transaction.

The RHIC RBAC provides enhanced security because
it does not rely on a middleware (Application Server)
layer between applications and device servers. Clients can
not bypass the RBAC and exploit low level access to
device servers.

In RHIC RBAC, ADO Managers also offer the option
of dynamic permission modification based on the value of
the dedicated parameter ‘permission’. An authorized
equipment specialist or operator can specify permissions
for individual parameters.

Logging of settings of restricted parameters need not be
handled by the RHIC RBAC system because it is handled
by the existing Set History system. The very mature and
reliable Set History system logs settings and provides
operator tools for searching the setting history. Additional
logging may be added at the ADO Manager level using
the existing ADO message logging system.

Shield ADO Manager
A large number of FECs and ADO managers are built

using the C++ toolchain, which does not currently provide
server level RBAC support. There are also several
EPICS-controlled devices in the RHIC complex. A
mechanism will likely be needed to protect devices that
do not directly participate in RBAC. The Shield Manager
is a Python-based manager with full set of RBAC
features. It can act as a bridge to parameters of other
managers/FECs or EPICS devices that require protection.
The RBAC protection in this model is not as complete as
the protection that is built in at the device ADO Manager
level. The full strategy for deployment of Shield
Managers has yet to be defined.

IMPLEMENTATION AND FUTURE
WORK

A prototype version of RBAC functionality has been
integrated into the client/server API of the Python
development suite of the RHIC Control System. RBAC
has been used in a test environment with Python-based
ADO managers. Python client applications can all
participate in RBAC. The C++ development suite has
been upgraded to supply user credentials in the dedicated
field of the RPC packet. This means that newly released
C++ client applications can also participate in RBAC.
Implementation of RBAC support in C++ ADO manager
software has just begun.

Future development.
RBAC needs to be more widely tested in Python

managers. Support in C++ ADO managers needs to be
implemented and tested. Based on the results of testing,
some adjustments in RBAC design may be made.

The policy for user role assignment needs to be
developed. Though our goal is to keep role management
as simple as possible, tools for operations monitoring and
management of roles will be required. Development of
both policies and tools will have to be done in
coordination with operations staff. More experience is
needed to determine what will work best for operations.

A commissioning plan for deployment in operational
systems needs to be developed. Note that RBAC can be
introduced incrementally at the server level with only
selected ADO managers participating. In fact,
participation may be limited to managers which have a
particular need for parameter protection. All client
applications must participate, however, for RBAC to be
effective.

Performance will need to reassessed as RBAC is
deployed on a wider scale. The critical dependency of
ADO Managers on the TokenMan servers needs to be
carefully reviewed to ensure that failures can not delay or
prevent critical settings from being delivered. The
emergency override mechanism for lead operators has to
be defined.

CONCLUSION
• Role-based access control (RBAC) infrastructure is

part of the RHIC Control Python API for clients and
servers. It is partially integrated into the C++ API
for clients and servers.

• The RBAC system is designed to require little
management effort once permissions and roles have
been established, but the design allows for dynamic
changing of user roles and device permissions when
necessary.

• RBAC token transactions have been observed to
have a very small effect on server and client
performance(2ms per transaction), which would not
be noticeable in most system use cases.

• More experience is needed to fully evaluate the
performance, reliability and manageability of the
RHIC RBAC design.

ACKNOWLEDGEMENTS
The authors would like to thank Sam Clark, Ted

D’Ottavio, Peggy Harvey and Seth Nemesure of the
Collider-Accelerator Department Controls Software
Group and James Jamilkowski of Electron-Ion Collider
Controls for their contribution to the RHIC RBAC design
process.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO05

Software

Software Architecture & Technology Evolution

TH2AO05

1153

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

REFERENCES
[1] https://www.bnl.gov/rhic/complex.php

[2] https://en.wikipedia.org/wiki/Role-
based_access_control

[3] D.S. Barton et al., “RHIC Control System”, Nucl. Instrum.
Methods Phys. Res., Sect. A, vol. 499, no. 2-3, pp. 356-371,
Mar. 2003. doi:10.1016/S0168-9002(02)01943-5

[4] Getting started with EPICS, https://docs.epics-
controls.org/en/latest/getting-started/
EPICS_Intro.html

[5] RPC: Remote Procedure Call Protocol Specification Version
2, https://datatracker.ietf.org/doc/html/rfc18
31

[6] W. Fu, D. P. Ottavio, and T. D, “Tracking Accelerator
Settings”, in Proc. ICALEPCS'07, Oak Ridge, TN, USA,
Oct. 2007, paper RPPB22, pp. 653-655.

[7] D.F. Ferraiolo and D.R. Kuhn, “Role-Based Access
Control”, in Proc. 15Th National Comput. Secur.
Conference, Baltimore,MD, USA, Oct. 1992. pp. 554–563.
doi:10.48550/arXiv.0903.2171

[8] W. Sliwinski. Introduction to RBAC.
https://indico.cern.ch/event/625527/attachmen
ts/1482155/2298902/RBAC-Overview-BE-ICS-23-
June-2017.pdf

[9] S. Binello, T. D, R. A. Katz, and J. Morris, “Cybersecurity
and User Accountability in the C-AD Control System”, in
Proc. ICALEPCS'07, Oak Ridge, TN, USA, Oct. 2007,
paper WPPB30, pp. 457-459.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO05

TH2AO05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1154

Software

Software Architecture & Technology Evolution

