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Abstract 
The CERN Accelerator Controls are comprised of vari-

ous high-level services that work together to provide a 
highly available, robust, and versatile means of controlling 
the Accelerator Complex. Each service includes an API 
(Application Programming Interface) which is used both 
for service-to-service interactions, as well as by end-user 
applications. These APIs need to support interactions from 
heterogeneous clients using a variety of programming lan-
guages including Java, Python, C++, or direct HTTP/REST 
calls. This presents several technical challenges, including 
aspects such as reliability, availability, and scalability. API 
usability is another important factor with accents on ease 
of access and minimizing the exposure to Controls domain 
complexity. At the same time, there is the requirement to 
efficiently and safely cater for the inevitable need to evolve 
the APIs over time. This paper describes concrete technical 
and design solutions addressing these challenges, based on 
experience gathered over numerous years. To further sup-
port this, the paper presents examples of real-life telemetry 
data focused on latency and throughput, along with the cor-
responding analysis. The paper also describes on-going 
and future API development.  

INTRODUCTION 
The CERN Accelerator Control System is composed of 

various high-level services which work together to enable 
the control of the accelerator complex, experimental areas 
and across various supporting technical infrastructure. The 
information provided by these controls services is contin-
uously accessed and modified by different software and 
processes to ensure optimal operation. Regular evolution 
of the software and hardware across the complex is needed 
to meet availability and performance targets. High-level 
APIs play a crucial role in responding to these demands, 
enabling developers and experts with greater ease and 
speed when working with software that needs to configure 
or interrogate the Accelerator Controls. The API became an 
integral part of software building blocks, reshaping how 
software systems are designed, implemented, integrated, 
and maintained. 

This paper presents the journey of continuous evolution 
of APIs used by CERN Accelerator Controls for the needs 
of systems configuration and integration, from rudimen-
tary function calls to sophisticated, feature-rich end-user 
interfaces. High-level APIs have been instrumental in un-
locking the potential of cutting-edge technologies by 
providing intuitive and expressive programmatic interfaces 
easing the access for the end-users, and equally, when in-
tegrating complex systems. The paper describes technolo-
gies and concepts used to provide reliable, robust and scal-
able APIs for the centralised CERN Controls Configura-
tion Service (CCS) [1]. 
 

CONTROLS CONFIGURATION SERVICE 
The CCS is a core component of CERN’s Control sys-

tem, serving as a central point for the configuration of all 
Controls sub-domains, in a coherent and consistent way. 
The CCS is used by diverse user groups, including instal-
lation teams (configuring Controls hardware), equipment 
experts (configuring processes and applications), and ac-
celerator operators. Though CCS downtime does not di-
rectly impact on-going beam operation, CCS users rely on 
being able to interact with the service at any point in time, 
to verify or define appropriate configurations. As such, ex-
tended downtime periods are unacceptable. To provide the 
highest possible availability and quality of service, the 
CCS, including its API are realized as a modular system, 
with redundancy, monitoring, and alerting at its core. Each 
day, on average, more than 400 different users and pro-
cesses generate 80 million requests using the CCS API to 
obtain or modify various configurations (Figure 1). Peak 
values of user traffic can reach considerably higher levels. 

 
Figure 1: Number of requests per CCS API node. 

API REQUIREMENTS AND DESIGN 
In addition to the core business requirements of the API, 

represented by the exposed data structures and operations, 
a robust API requires careful consideration of architectural, 
technological, and operational factors from the design 
stage, including: 
 Scalability to meet the demands of a growing user 

base. 
 Availability ensuring minimal downtime. 
 High performance. 
 Fault tolerance. 
 Security and stability. 
 Accessibility by non-software-developers and across 

different programming languages and technologies. 
The overall CCS architecture is based on the REST 

(Representational state transfer) architectural pattern - the 
de-facto industry standard for HTTP-based, high-level 
communication between different systems. REST based 
APIs run on an HTTP server, are language agnostic and 
natively supported by popular programming languages and 
web browsers. Scalability and high availability are 
achieved by deploying multiple instances of the API on re-
dundant physical machines to safeguard against downtime 
caused by hardware or network failures, therefore ensuring 
continuous operation. This is facilitated by the server in-
stances being stateless and therefore not depending on any 
shared information, as well as isolating requests from each 
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other. As a result, server nodes can be transparently added 
or removed in function of traffic and peak demand. 

To uniformly distribute incoming requests and mitigate 
the risk of overloading a single API instance, load-balanc-
ing across API instances is implemented on both the API 
server-side and within dedicated Java & Python CCS cli-
ent-side API libraries. The load-balancers also help fault 
tolerance by transparently directing client requests to 
healthy API server instances in case a server becomes un-
available.  

Concerning high-performance requirements, a caching 
mechanism is used to maximise response times, as in many 
situations, the same static or immutable data is read many 
times by independent clients. To avoid each request to 
travel from client via server to the persistence layer (Oracle 
database) a cache mechanism was introduced on both the 
client-side and server-side. As a result, the response time 
for accessing cached data was reduced by up to a factor of 
10. For example, when extracting a list of CERN accelera-
tors (immutable data), the total response time has been re-
duced from 40 ms to 4 ms when using the cache in com-
parison to a direct database call (JDBC generated by Hi-
bernate via Spring JPA). 

Fault tolerance is implemented by error handling and a 
retry mechanism for failed requests. This prevents service 
disruptions caused by temporary issues (hardware prob-
lems, network issues or server unavailability) and ensures 
that the API handles permanent errors gracefully, respond-
ing to the user in a meaningful way (e.g. with specific error 
codes or clear messages).  

Security is based on industry standards for authentica-
tion and authorization mechanism to protect sensitive data 
by restricting the access to authenticated and authorized us-
ers. Request rate limits and API quotas (throttling) are used 

to guard the API against DDoS (distributed denial-of-ser-
vice) attacks and accidental API misuse by unaware end-
users, thus minimizing the impact on others. Throttling is 
essential in the API design, considering that although the 
API is scalable, the amount of underlying server and net-
work resources cannot be scaled-up indefinitely. 

Orthogonal aspects in robust API design include moni-
toring and logging, which are crucial to track API perfor-
mance, user activity and abnormal system behaviour, or to 
identify potential bottlenecks. For the CCS API, off-the-
shelf solutions like Prometheus, Grafana, and the ELK 
stack are used. Combined, well-structured logs, metrics, 
alerts, and dashboards help system engineers gain insights 
into API behaviour and its health, both of which need con-
sideration for proactive software system control. 

Within the CCS API, attention to the aforementioned as-
pects help ensure that the expectations are met. The next 
chapter describes more details of how the implementation 
is realised. 

TECHNICAL IMPLEMENTATION  
The selected technology and implementation aim to 

meet the demands of modern software by providing a cut-
ting-edge, robust, and highly available solution. As a result 
of an initial design and subsequent prototyping validation 
phase, it was decided to use Java, Spring Boot and the Net-
flix Cloud ecosystem for the API service implementation. 
This technology stack was chosen for its versatility, plat-
form independence, and comprehensive toolset, making it 
the ideal foundation for developing RESTful APIs. At its 

core, Java provides the reliability and cross-platform com-
patibility necessary for a wide range of deployments. 
Spring Boot streamlines development, minimizing config-
uration overhead and allows for rapid application setup. 

Figure 2: Redundant REST API architecture. 
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Incorporating the open-source Netflix Cloud library ele-
vates the API's capabilities, enhancing its resilience and 
scalability. Eureka which is one of the core elements of 
Netflix Cloud framework is used as a service discovery to 
ensure seamless service registration and discovery, facili-
tating dynamic routing and load-balancing. This feature al-
lows clients to effortlessly find and interact with API in-
stances making it highly available and responsive. The in-
tegration of Netflix Ribbon (IPC, the Inter Process Com-
munication client-side library) closely intertwined with 
Eureka, adds client-side load balancing, evenly distributing 
incoming requests across multiple API server instances. 
This load balancing mechanism optimizes performance 
and crucially, eliminates the single point of failure by en-
suring that the system can seamlessly continue serving cli-
ents when server instances experience issues (provided that 
at least one server instance remains on-line). To enhance 
fault tolerance, Resilience4j, a circuit breaker mechanism, 
is used. By isolating points of access to remote services, it 
prevents cascading failures and gracefully handles issues, 
maintaining the API's stability during adverse conditions. 
This proactive approach to fault tolerance is crucial for de-
livering uninterrupted service even when components 
within the system encounter problems. 

Redundancy is a fundamental principle in the architec-
ture of REST APIs when it comes to ensuring high availa-
bility. Multiple instances of the CCS API servers are de-
ployed across different bare metal machines and are auto-
matically registered with Eureka for service discovery by 
clients. This redundancy guarantees that the load balancer 
can distribute traffic effectively, even in scenarios where 
one or more API server instances fails or requires mainte-
nance. As a result, the overall API service remains resilient 
and consistently available. Figure 2 shows an overview of 
the CCS redundant REST API architecture. 

Scalability is another core aspect of the CCS API's archi-
tecture. The stateless design allows for easy horizontal 
scaling of server instances to accommodate varying work-
loads, and auto-scaling policies are employed to dynami-
cally add or remove instances based on traffic patterns, en-
suring optimal resource utilization. In other words, to avoid 
wasting machine resources, only a minimal number of 
physical nodes are kept, as needed, to fulfil the client re-
quests. In case of an increase in traffic or when requests are 

taking more time than the defined thresholds, additional 
nodes will be started, and Eureka will automatically redi-
rect new clients’ requests to them. 

Authentication and authorisation are based on standard 
Spring Security mechanisms, customized, and integrated 
with CERN-specific infrastructure. Role-based authoriza-
tion is used, which is a foundational concept in designing 
secure and controlled REST APIs. It establishes a struc-
tured framework where users or clients accessing an API 
are granted permissions based on their assigned roles. 
These roles, such as "CCS-DEVICE-EDITOR'' or "CCS-
HARDWARE-EXPERT" come with predefined sets of 
privileges that dictate the actions and data a user can access 
or modify. Role-based authorization offers a range of ben-
efits, including granular access control, scalability for 
evolving applications, compliance with regulatory stand-
ards, simplicity in administration, and enhanced security. 
The assignment of roles to individual users is managed di-
rectly by relevant service or domain experts. This gives the 
flexibility to grant and revoke permissions based on chang-
ing circumstances, for example when expert support team 
interventions are ongoing and require elevated permis-
sions. Role management is also exposed as part of the CCS 
REST API, allowing automation of role assignment. An ex-
ample usage is to assign or grant roles according to the cur-
rent operational status of the machines within CERN’s ac-
celerator complex. The actual implementation of the role-
based authorization is based on the standard CERN Role-
Based Access Control (RBAC) framework [2]. Integration 
of CERN’s RBAC with Spring Security is seamless from 
the end-user perspective, with RBAC access tokens trans-
lated into OAuth2 (recently replacing the use of SAML). 

The main high-level programming languages used 
within CERN accelerator controls environment are Python 
and Java. To optimise the usability of the underlying, lan-
guage independent REST-based CCS API, dedicated Soft-
ware-Development Kits (client SDKs) have been devel-
oped. The dedicated Java and Python SDKs encapsulate in-
trinsic details of the REST implementation (including de-
tails of JSON-based serialization) and allow to leverage 
language-specific features and 3rd-party libraries. In addi-
tion, the end-user developer experience when using these 
SDKs is enhanced by language-specific IDE code-comple-
tion features. The design pattern of fluent interfaces is also 
used to further help the users (Figure 3). 

The REST API endpoints are documented using The 
OpenAPI Specification (OAS, previously Swagger) [9] 

such that as shown in Fig. 4, clients wishing to use the API 
directly (without a client SDK) can easily identify: 
 Which end points they need to interact with. 
 The JSON data formats. 

Figure 3: Fluent style Java client SDK example. 
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 The semantics of the available HTTP methods. 

 
Figure 4: OpenAPI documentation. 

API DEVELOPMENT PROCESS 
To optimise the API development process, efficient and 

collaborative tools and practices are indispensable. For 
CCS API development, GitLab together with a Merge Re-
quest (MR) workflow is used [8]. This workflow stream-
lines how team members work on code changes and helps 
play a crucial role in orchestrating modern software devel-
opment. Developers use feature branches, making incre-
mental commits, and then propose their changes through 
MRs (Figure 5). 

 
Figure 5: Merge request workflow. 

This approach facilitates agile development of new fea-
tures by avoiding developers working on distinct features 
disturbing one another. Each change can be designed, im-
plemented, and tested at its own pace. To automate and fa-
cilitate code development and deployment CI/CD pipelines 
are vital.  For the CCS API, Jenkins automates the CI pro-
cess, continuously building, testing, and validating code 
changes, triggered by both MRs and scheduled nightly 
jobs. This automation provides developer feedback, guar-
antees that new code meets quality standards, helps ensure 
things work as expected and avoids regression. 

Once the integration phase (CI) has successfully com-
pleted, Ansible [5] is used for the deployment phase (CD). 
Ansible playbooks define the deployment process, offering 
a robust and consistent method for delivering software to 
various environments. This approach eliminates the need 
for developers to perform manual operations to build and 
deploy the REST API services. It also guarantees that de-
ployments are reproducible and error-free, across the de-
velopment team machines. Additionally, Jenkins and Ansi-
ble provide monitoring, logging, and alerting capabilities, 
allowing for quick responses to any build or deployment 
issues that may arise during the pipeline execution. 

Combining GitLab, Jenkins, and Ansible allows to es-
tablish an agile, robust, efficient, and reliable software de-
livery process. Overall, the integration facilitates team 

collaboration, code quality and deployment automation 
which in turn help accelerate software delivery with confi-
dence. Since the complete and successful adoption of 
CI/CD for the CCS, a reduction in end-user support re-
quests has been observed, which can be attributed to the 
deterministic nature of the development, release and man-
agement process of the API services. 

Testing is an integral part of software development and 
helps ensure that code works as expected, performs effi-
ciently, and fulfil standards and user requirements. In addi-
tion to standard unit, integration, and regression testing, the 
CCS API development process uses Gatling [6] and Ar-
chUnit tests [7]. Gatling is an open-source framework de-
signed for performance and stress testing of REST based 
services and applications. It allows service providers to 
simulate different API usage scenarios and observe how 
services behave in terms of resource consumption and sta-
bility under various loads. It helps to detect undesired or 
unexpected behaviours during high and continues load. By 
incorporating Gatling framework in CI/CD pipelines, po-
tential performance issues can be detected before rolling 
out a new API version in production, thus mitigating risks 
for end-users (Figure 6). 

 
Figure 6: Example Gatling tests summary. 

ArchUnit enables architecture testing and provides the 
possibility to define and enforce architectural constraints 
and standards, and to verify that code meets predefined 
rules. For example, such rules can check dependencies be-
tween classes, packages, different layers of the software, 
naming conventions and more. 

Incorporating both test frameworks into the overall de-
velopment process helps ensure that software follows best 
architectural practices and performs well under demanding 
conditions. For the CCS API, software quality has been im-
proved as a result, with a reduced number of runtime issues 
and bugs, including otherwise difficult to detect issues of 
an asynchronous nature. 

FUTURE IMPROVEMENTS  
The current implementation and architecture of the CCS 

API provides a high availability and reliable service, that 
meets the current performance expectations. Nevertheless, 
a prototype deployment of the CCS API on a Kubernetes 
platform highlighted that an evolution of the system to 
adopt containerisation and orchestration would bring fur-
ther improvements. Currently, CSS API server instances 
are deployed on bare-metal machines, coupling them to 
specific hardware and Operating System. A move towards 
orchestrated container images deployed on a Kubernetes 
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platform will further facilitate automatic deployment, scal-
ing, and fault tolerance, independently of hardware up-
grades, etc. This work is expected to take place later in 
2024. 

A REST API, by definition, should provide immediate 
responses and not keep state on the server. More CCS use 
cases are emerging whereby a request involves interactions 
with many controls sub-systems and therefore, requires 
time to gather and process results, then provide a response. 
To avoid keeping clients connected and therefore blocking 
resources, an asynchronous model of communication is be-
ing planned. In the new approach, each operation will be 
composed of two phases: 

1. A request from the client process. 
2. A notification upon completed of the operation. 
The implementation will be based on Kafka [3,4], an 

open-source, distributed event streaming platform which is 
currently part of the CCS API cache eviction mechanism. 
Kafka facilitates integration of various clients and thanks 
to its persistence, guarantees messages delivery to clients, 
even if clients are temporarily available. Kafka supports 
redundant instances with auto-balancing of traffic, high-
availability guarantees, and very low latency. 

CONCLUSIONS 
When it came to selecting a technology for implement-

ing the CCS API, the primary goal was to offer a solution 
that was not only user-friendly but also highly reliable and 
robust, destined to become an integral component of the 
Controls Configuration Service. Five years since the initial 
implementation of the REST API, all requirements have 
been met or even exceeded.  

Presently, the CSS API is used by a diverse community 
of over 400 users and processes, easily accommodating 
more than 80 million requests per day. Remarkably, apart 
from the scheduled maintenance periods during CERN 
Technical Stops, only three incidents of unavailability were 
recorded. These rare occurrences were swiftly mitigated 
thanks to the comprehensive monitoring and alerting sys-
tem, resulting in minimal disruptions to the operation of 
the particle accelerator complex. 

The CCS API's ease of use has not only fostered its wide-
spread adoption but has also inspired other developers to 
readily incorporate REST APIs into their controls software 
services as the preferred method of communication be-
tween various applications and sub-systems. 
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