
LOG ANOMALY DETECTION ON EUXFEL NODES
A. Sulc∗, A. Eichler, T. Wilksen, DESY, Hamburg, Germany

Abstract
This article introduces a method to detect anomalies in the

log data generated by control system nodes at the European
XFEL accelerator. The primary aim of this proposed method
is to provide operators a comprehensive understanding of the
availability, status, and problems specific to each node. This
information is vital for ensuring the smooth operation. The
sequential nature of logs and the absence of a rich text cor-
pus that is specific to our nodes poses significant limitations
for traditional and learning-based approaches for anomaly
detection. To overcome this limitation, we propose a method
that uses word embedding and models individual nodes as
a sequence of these vectors that commonly co-occur, using
a Hidden Markov Model (HMM). We score individual log
entries by computing a probability ratio between the proba-
bility of the full log sequence including the new entry and
the probability of just the previous log entries, without the
new entry. This ratio indicates how probable the sequence
becomes when the new entry is added. The proposed ap-
proach can detect anomalies by scoring and ranking log
entries from EuXFEL nodes where entries that receive high
scores are potential anomalies that do not fit the routine of
the node. This method provides a warning system to alert
operators about these irregular log events that may indicate
issues.

INTRODUCTION
The stability and reliability of the European XFEL fa-

cility are essential for a successful operation. To facilitate
this, a network of watchdog nodes is continuously monitor-
ing the health state of the facility’s essential components.
These nodes, numbering in the hundreds, act as monitoring
technology, ensuring the proper functionality of crucial Eu-
ropean XFEL accelerator elements. Within their logs lie
valuable information about the health state that can signal
any potential problems with specific components or parts
that could impact the entire facility. Automating the costly
task of monitoring these lengthy and often redundant logs
becomes especially important in guaranteeing the optimal
performance of all nodes. The logs contain a wealth of infor-
mation concerning the system’s status, encompassing error
messages, anomalies, and other factors that could affect the
system or its associated components. By exploiting language
embedding and anomaly detection techniques on these logs,
we can efficiently identify and address issues or errors at the
earliest possible stage when they occur in logs. This proac-
tive approach empowers us to pinpoint potential problems
before they escalate, enabling prompt measures to be taken
to resolve ongoing issues. Furthermore, it facilitates timely
intervention and the implementation of preventive measures

∗ antonin.sulc@desy.de

to mitigate potential problems from arising. Monitoring the
logs of the watchdog nodes by textual analysis of their logs
not only provides an automated means of comprehending
the European XFEL accelerator system conditions but also
enables early detection and resolution of issues that would
otherwise only gain significance in the event of a specific
node failure.

The structure of the paper is the following: First, we
summarize the related work in log anomaly detection. In
the next section, we show four main steps of our approach
with important justifications and examples. Lastly, we show
several examples and sketch a potential future work in this
field.

RELATED WORK
A common approach to detecting anomalies in logs

is to manually define rule-based systems. For example,
Cinque et al. [1] and Yen et al. [2] have developed rule-
based methods that scan logs for predefined patterns indica-
tive of anomalies. However, these approaches rely heavily
on expert knowledge to construct effective rules, which can
be labor-intensive. To overcome this limitation, more auto-
mated techniques have emerged leveraging machine learning
to discover anomalies.

With the increasing popularity of machine learning (ML)
models, deep learning-based approaches gave the potential
to perform a thorough log analysis under the presence of
a large log corpus, often also accompanied by laboriously
made labels. Long-term-short-term (LSTM) recurrent neu-
ral networks [3–5] turned out to be popular for log-anomaly
detection due to its ability to handle sequential data. Re-
cently transformers [6] were deployed in training to detect
anomalies in logs [7]. In [7] they used a BERT [8] model
for log-anomaly detection. However, their reliance on large
training datasets and millions of parameters can limit their
applicability in resource-constrained scenarios like ours. For
a more comprehensive survey of ML log analysis, see [9].

Bertero et al. [10] propose an approach that treats logs as
natural text and leverages word vector Word2Vec representa-
tions [11, 12] to perform automated word embedding. This
technique maps words to a vector space, enabling the use
of off-the-shelf classifiers for anomaly detection. A major
drawback is that their approach still relies on manual labeling
to train the classifier, which can be prohibitively expensive
in our scenario. Additionally, they treat each log entry in-
dependently, ignoring the sequential nature of consecutive
log message relationships. To mitigate the need for labeled
data, other works like [13, 14] have explored unsupervised
learning techniques. These methods apply text mining to
logs and employ clustering approaches to identify anoma-
lies without relying on manual labels. However, they still

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

TH2AO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1126

Software

Software Architecture & Technology Evolution

consider logs in isolation rather than leveraging contextual
information across log sequences.

In this work, we propose an alternative approach to detect
anomalies without any labels or extensive user intervention.
Our method is designed to adapt to novel log messages while
also capturing the sequential nature of log analysis, overcom-
ing the limitations of prior techniques. Specifically, we faced
challenges from the limited diversity of log entries, which
does not provide sufficient training data for standard ML
models. Inspired by [10], we employ word vector embed-
dings to represent log entries in a high-dimensional space,
mitigating data scarcity. However, instead of relying on su-
pervised classifiers, we take a sequential modeling approach
by treating logs from each source as temporal event streams.
Our key insight is to focus on modeling patterns of occur-
rences within these streams, rather than just individual log
entries. To achieve this, we introduce an unsupervised tech-
nique based on Hidden Markov Models operating on the
embedded log sequences. By learning sequential regulari-
ties, anomalies can be detected from deviations in context
rather than content. This probabilistic approach requires
estimating only a minimal number of parameters, enabling
robust detection even with limited training data.

METHOD
In this section, we explain our proposed approach for scor-

ing individual log entries to detect anomalies. The approach
involves four main steps. First, we perform pre-processing
on the raw log entries to replace redundant patterns and min-
imize the effect of unique token sparsity. Pre-processing
transforms the text into consistent tokenized forms. Next,
we generate embeddings for each log entry using Word2Vec.
We calculate a mean vector of the word vectors for all terms
in the entry. This provides a dense numeric representation
capturing the contextual meaning of individual words in the
log entry. Third, we fit an HMM model on sequences of these
log entry embeddings from past observed logs. The HMM
learns a probability distribution over likely sequences of log
entries. Finally, we score new log entries by computing their
probability under the trained HMM. Low probability entries
deviating from the learned sequential patterns are identified
as anomalies. The key advantage of our approach is that
it relies solely on sequence modeling of log embeddings,
without needing content analysis or keyword matching rules.

Preprocessing and Tokenization
In this section, we detail the preprocessing steps applied

to the raw log text before analysis.
First, we separated the log entries by identifying times-

tamp delimiters and newline characters in the raw messages.
This extracted the individual log entries. Next, we tokenized
the log entries using the NLTK tokenizer [15], splitting them
into individual tokens. The following transformations are
then applied to each token:

1. Special characters are removed, except for numeric,
alphabetic, and forward slash (/) characters.

2. Tokens potentially containing server or device names
are replaced with placeholders, including those starting
with xfel or ending in svr or server.

3. Numeric tokens are replaced with placeholders like
$nz for non-zero numbers and $zero for zeros.

4. Entire log entry is converted to lowercase.
5. English stop words [15] are removed.

Preprocessing significantly reduced sparseness in the log
entries by converting them into consistent tokenized forms.
The key steps of entry extraction, tokenization, entity mask-
ing, and stop word removal help prevent overfitting minor
textual variations. This enables more robust sequence mod-
eling in later stages.

Embedding
In our approach, we use Word2Vec [11, 12] to represent

log entries numerically in a 𝑁-dimensional space. Word2Vec
is based on the idea that words appearing in similar contexts
likely have similar meanings. It trains a shallow neural net-
work to reconstruct word contexts, learning embeddings that
capture semantic relationships from the surrounding words.
We employ continuous bag-of-words (CBOW) introduced
in [12] to train the Word2Vec. CBOW uses the context to
predict a target word omitted in the input, alternatively, a
skip-gram training can be used, which does the reverse. The
linear Word2Vec mapping learns vectors where similarity in
embedding space correlates to semantic similarity. For log
analysis, Word2Vec can learn relationships between terms
that often co-occur, capturing the context. An important
capability is that arithmetic operations can be performed on
the embedded vectors. For example, adding the embeddings
for disk and space yields vectors close to related terms
like available and lack. Furthermore, combining linux
and mac embeddings produces vectors near other operating
system terms like windows and os, see Fig. 1. The additive
property is important for representing multi-word log entries
by taking the mean of the token embeddings. While more
complex pooling techniques exist [16, 17], mean pooling
proved sufficient for our needs.

Anomaly Detection with HMM
We borrow the notation from [19]. Consider a set

{𝑞1, … 𝑞𝑁} of hidden states, and a sequence of observa-
tions (𝑜1, … 𝑜𝑇), each one drawn from a vocabulary 𝑉.
We make two assumptions: first, that a state 𝑞𝑖 depends
only on the previous state 𝑞𝑖−1, i.e. 𝑝 (𝑞𝑖|𝑞1, … 𝑞𝑖−1) =
𝑝 (𝑞𝑖|𝑞𝑖−1) (first-order Markov assumption), second a prob-
ability of 𝑜𝑖 depends only on state that produced the ob-
servation 𝑞𝑖 and not on any other states or observations,
i.e. 𝑝 (𝑜𝑖|𝑞1, … 𝑞𝑖 … 𝑞𝑇, 𝑜1, … , 𝑜𝑖, … , 𝑜𝑇) = 𝑝 (𝑜𝑖|𝑞𝑖). The
above-stated assumptions can be represented via hidden
Markov Models (HMM).

In our model, the observations are vector representations
of log entries, obtained through preprocessing, tokenization,
and embedding into an 𝑁-dimensional space. The hidden
states represent the unknown underlying state of the system
generating the logs.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

Software

Software Architecture & Technology Evolution

TH2AO01

1127

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

6 8 10 12 14

First dimension

2

4

6

8

10

S
ec

on
d

di
m

en
si

on

months

operating
systems

users

Figure 1: Figure shows a 2D UMAP [18] projection of
the 16-dimensional Word2Vec embeddings for all words in
the entire vocabulary. In the projection, semantically simi-
lar words within distinguished categories have embedding
vectors clustered closely together, distinguished by the red.
They indicate clusters of three-letter month names (except
feb which is absent in vocabulary), user names, and oper-
ating systems (i.e. windows, linux, mac, os). The prox-
imity of point clusters with similar meanings shows that
the Word2Vec has learned latent semantic relationships and
mapped similar words to nearby embedding locations.

Given a sequence of observed log vectors (𝑜1, … , 𝑜𝑖−1),
our goal is to estimate the probability of a new vector 𝑜𝑖
and compare how probable his occurrence is considering
previously observed vectors (𝑜1, … , 𝑜𝑖−1)

𝑠𝑖 = log 𝑝𝜃(𝑜1,...,𝑜𝑖−1)
𝑝𝜃(𝑜1,...,𝑜𝑖)

= log 𝑝𝜃 (𝑜1, ..., 𝑜𝑖−1) − log 𝑝𝜃 (𝑜1, ..., 𝑜𝑖) .
(1)

The score 𝑠𝑖 is quantifying the anomaly level 𝑠𝑖 of the new
entry 𝑜𝑖 based on parameters 𝜃. HMM parameters 𝜃 can
be estimated from inputs before 𝑜𝑖, i.e.(𝑜1, … , 𝑜𝑖−1) or a
sub-sequence (e.g. sliding window). We discuss estimation
in the following section.

A key requirement in log anomaly detection is handling
novel entries [5]. Although our method cannot fully gener-
alize to completely new logs, it focuses more on sequence
modeling than individual semantics. This enables detecting
anomalies based on contextual irregularities and variations
rather than content. We observed that anomalies manifest
more as unusual sequences than specific terms. By scor-
ing based on sequence likelihood rather than keyword rules,
even new log messages can be assigned anomaly scores using
their contextual deviation. This differentiates our technique
from [3–5, 7, 10], which relies on supervised classification.
Instead, we take an unsupervised sequential approach to as-

...
0 config file create error
1 config file create error
2 config file create error
3 remoteerrors errorcount $nz
4 config file create error
5 config file create error
6 config file create error
7 config file create error
8 rpccheck nullproc error
9 no process try start
10 pid change $nz $nz
11 getpid no process
12 no process try start
13 pid change $nz $nz
14 getpid no process
15 no process try start
16 pid change $nz $nz
17 rpccheck nullproc error toggled $nz times $nz min
18 rpccheck nullproc error
19 rpccheck fails $nz kill $nz

...

0 1 2 3 4 5 6 7 8 9 101112131415161718
Event (log entry)

−80

−60

−40

−20

0

20

40

60

S
co

re
s

score s

average s

0 100 200 300 400 500
Event (log entry)

−1400

−1200

−1000

−800

−600

−400

−200

0

S
co

re
s

s of last 500 events

s of anomalous events

Figure 2: In this anonymized log, an anomaly appears at row
17, where the error message rpccheck nullproc error
toggled first appears. This corresponds to a spike in the
anomaly scores, as shown in the bottom left chart. Inter-
estingly, earlier error messages like config file create
error have relatively high anomaly scores as well. How-
ever, since these repeat multiple times, their scores are
slightly lower than the message on row 17. The message
pid change $nz $nz also appears repeatedly in different
contexts. Typically, this message does not indicate anything
unexpected, which is why its anomaly scores tend to be much
lower on average. The spike at row 17 stands out as the most
prominent anomaly in this log example. The bottom right
chart shows the anomaly scores for the last 500 log messages
from this node. It illustrates that this node tends to produce
various (not necessarily) error messages fairly often, leading
to generally high anomaly scores and many false positives
with our method.

sess entries based on context rather than predefined labels.
However, false alarms may still occur if natural fluctuations
also deviate from learned patterns, as we show in Fig. 2.

Parameter Estimation It is important to clarify the
specific log sequence segments used for estimating the HMM
parameters 𝜃 in our experiments.

In the real-world results presented (Figures 3, 4, 5, and 2),
parameter estimation consistently leveraged all previous log

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

TH2AO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1128

Software

Software Architecture & Technology Evolution

...
0 remoteerrors errorcount $nz
1 remoteerrors errorcount $nz
2 remoteerrors errorcount $nz
3 remoteerrors errorcount $nz
4 remoteerrors errorcount $nz toggled $nz times $nz min
5 remoteerrors errorcount $nz
6 remoteerrors errorcount $nz
7 remoteerrors errorcount $nz
8 remoteerrors errorcount $nz
9 remoteerrors errorcount $nz toggled $nz times $nz min
10 remoteerrors errorcount $nz
11 rpccheck nullproc error
12 rpccheck fails $nz kill $nz
13 getpid pid not match process name
14 no process try start
15 getpid pid not match process name
16 pid change $nz $nz
17 rpccheck nullproc error
18 rpccheck fails $nz kill $nz
19 rpccheck fails $nz kill $nz

...

0 1 2 3 4 5 6 7 8 9 101112131415161718
Event (log entry)

−400

−300

−200

−100

0

S
co

re
s

score s

average s

0 10 20 30 40 50 60 70
Event (log entry)

−400

−300

−200

−100

0

S
co

re
s

s of last 50 events

s of anomalous events

Figure 3: An anonymized instance of an anomalous log (up-
per section), with anomalous events becoming evident start-
ing from row 11. This is marked by the sudden appearance
of the error message rpccheck nullproc error, coin-
ciding with a notable increase in anomaly scores (depicted
in the bottom left and right figures). The more detailed score
plot (bottom left) provides a close-up view of the scores,
revealing a rapid increase beginning at the 11th log entry,
indicative of a significant error. The score plot in the bottom
right showcases scores for the last fifty log entries (in blue),
with overlaid scores from just before the commencement of
the anomalous event (represented by red dashed lines).

messages, keeping test sequences separate. The final few
messages were excluded and treated as a test set.

This strategy demonstrated satisfactory efficiency given
the hardware, as the Baum-Welch algorithm for HMM train-
ing scales linearly with sequence length.

However, some stations had tens of thousands of messages,
potentially causing unreasonable computational time growth.
We explored two non-overlapping strategies to mitigate this:

1. Using a sliding window subset of the sequence, as
shown in Fig. 6. Since the HMM has few parameters,
it remains stable even on shorter training sequences.

2. Initializing with parameters from the previous iteration,
rather than full retraining. This avoids deviating far
from a previous parameter estimate.

The sliding window approach dynamically focuses on
recent local context, while parameter reuse leverages past
parameters as context and can increase stability. Both main-

...
0 remoteerrors errorcount $nz toggled $nz times $nz min
1 remoteerrors errorcount $nz
2 remoteerrors errorcount $nz
3 remoteerrors errorcount $nz
4 remoteerrors errorcount $nz toggled $nz times $nz min
5 rpccheck clnt create error
6 remoteerrors errorcount $nz
7 rpccheck fails $nz kill $nz
8 pid change $nz $nz
9 rpccheck fails $nz kill $nz
10 pid change $nz $nz
11 rpccheck fails $nz kill $nz
12 no process try start
13 pid change $nz $nz
14 remoteerrors errorcount $nz
15 no process try start toggled $nz times $nz min
16 remoteerrors errorcount $nz
17 remoteerrors errorcount $nz toggled $nz times $nz min
18 remoteerrors errorcount $nz
19 remoteerrors errorcount $nz
20 remoteerrors errorcount $nz toggled $nz times $nz min

...

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Event (log entry)

−80

−60

−40

−20

0

20

40

60

S
co

re
s

score s

average s

0 10 20 30 40 50 60 70
Event (log entry)

−80

−60

−40

−20

0

20

40

60

S
co

re
s

s of last 50 events

s of anomalous events

Figure 4: An anonymized example of an anomalous log
(top section), with the emergence of anomalous events start-
ing at row 5. The anomalous series of events starts with
the occurrence of the message rpccheck fails 𝑛𝑧𝑘𝑖𝑙𝑙nz.
Consequently, an abrupt increase in anomaly scores is ob-
served (visible in the bottom left). Notice the score plot in
greater detail (bottom left) presents a sharp escalation in
scores following the 5th log entry. Furthermore, despite log
entry 6 bearing resemblance to entries 0-4, the error present
in log entry 6 induces a slight increase in the score associated
with log entry 5. The score chart (bottom right) provides an
overview of scores for the preceding 50 log entries, promi-
nently highlighting the location of the likely occurrence of
the problem.

tain reasonable training times but have trade-offs we intend
to evaluate further in future work. Full sequence training suf-
ficed initially, but scaling necessitates more efficient training
strategies. The sliding window and reuse techniques present
two promising directions for larger-scale logs.

Unlike the minimal example in Fig. 6 where the anomaly
was excluded from training, Fig. 7 shows the performance
when the full log sequence including the anomaly is used
for HMM estimation. Despite the anomalous entries being
present during estimation, the model still detects the dis-
ruption in the learned sequence patterns, as evidenced by
the spike in anomaly scores. This highlights an important
capability of our approach - the ability to identify anomalies
even when trained on logs containing anomalies. By relying
on sequential deviations rather than content matching, the

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

Software

Software Architecture & Technology Evolution

TH2AO01

1129

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

...
0 getpid no process
1 no process try start
2 getpid no process
3 getpid no process
4 no process try start
5 getpid no process
6 no process try start
7 no process try start
8 pid change $nz $nz
9 getpid pid not match process name
10 pid change $nz $nz
11 getpid pid not match process name
12 pid change $nz $nz
13 pid change $nz $nz
14 pid not match process name toggled $nz times $nz min
15 pid not match process name toggled $nz times $nz min
16 signal term received
17 terminating threads closing files
18 writer thread terminated
19 interrupt thread terminated

...

0 1 2 3 4 5 6 7 8 9 101112131415161718
Event (log entry)

0

20

40

60

80

100

120

140

S
co

re
s

score s

average s

0 10 20 30 40 50 60 70
Event (log entry)

−50

−25

0

25

50

75

100

125

150

S
co

re
s

s of last 50 events

s of anomalous events

Figure 5: In this anonymized log, an anomaly appears to
occur around row 14. At this point, the error message pid
not match process name toggled appears repeatedly.
This corresponds to a spike in the anomaly scores, as seen in
the bottom left chart. However, similar spikes occur earlier
at log entries 9 and 11, suggesting other potential anomalies.
The detailed anomaly score chart shows a sharp rise after
log entry 13. But notably, entries 9 and 11 also cause score
increases, not just entry 14. When viewed in the context of
the previous 50 log entries, the score spike at 14 is prominent,
as illustrated in the bottom right chart. However, the earlier
spikes indicate this may not be an isolated anomaly.

presence of irregular entries in the training logs does not
prevent detecting more such deviations at test time. This
enables post-mortem analysis scenarios where clean train-
ing data is not available. Even if the training logs contain
some anomalies, new anomalies can still be flagged based
on their contextual irregularity. The model detects breaks in
sequential patterns irrespective of whether anomalous logs
were seen during training.

An Example - Sequence Anomaly Detection

To demonstrate how HMM can detect different types of
anomalies, consider a simple HMM with two hidden states
𝑞1, 𝑞2. We examine two scenarios with different observable
outputs:

• The observable vocabulary contains two common out-
puts 𝑜1, 𝑜2 along with one anomalous event 𝑜𝑎

• The observable vocabulary only contains standard out-
puts 𝑜1, 𝑜2. However, one of these common outputs
appears in an unexpected sequence position.

In the first scenario, the anomalous output 𝑜𝑎 will decrease
the likelihood and thus increase the anomaly score when
it appears, allowing it to be flagged as anomalous. In the
second scenario, although the observed output is familiar,
its occurrence in an unlikely position based on the learned
sequence dynamics will also increase the anomaly score.

To demonstrate, we created a minimal 8-event example
where disrupting the pattern impacts the scores, see Fig. 6.
Critically, the HMM parameters are estimated excluding the
last (anomalous) event, and this approach succeeds even if
the anomalous sequence was included in parameter estima-
tion, as Fig. 7 shows. This example shows that the model
detects anomalies by identifying disruptions in expected
patterns, even with limited and corrupted input data.

We show that HMM can detect anomalies either due to
unlikely/novel log messages themselves or due to standard
messages appearing in surprising positions that break the ex-
pected sequencing patterns. The HMM assigns lower scores
when observations diverge from the learned distributions.
The examples in Fig. 6 and Fig. 7 also demonstrate that
finding parameters of HMM requires only a few events and
inputs can even be corrupted with noise.

Analysis - Word Embedding
In this section, we will perform a more detailed analysis

of the embeddings produced by our corpus to demonstrate
robustness even though the log entries are not natural lan-
guage. Processing logs with Word2Vec embedding presents
an interesting language task because the corpus contains only
a few words (475 unique tokens) and after pre-processing
and tokenization, there are less than 1000 unique log mes-
sages, see Fig. 8. The absence of diversity of messages and
words also justifies why more parameter-rich approaches are
unfeasible.

Figure 1 shows an embedding with some points being
distinguished to demonstrate that semantically similar words
are embedded closely. Furthermore, in Fig. 8, we show
embedding of averaged entry vectors to further underline
the challenge in the lack of diversity of log entries, which
form only a few packed clusters.

IMPLEMENTATION
The code was implemented in Python 3.9. For embed-

ding log messages with Word2Vec, the Gensim library was
used [20]. For modeling the sequences, the Hmmlearn pack-
age was used [21].

RESULTS
We selected four instances to show. Input logs and their

computed scores are shown in Figures 3, 4, 5 and 2.
Figure 3 shows a short part of the input log and results

of the anomaly detection method working as anticipated
- the sudden appearance of the error message rpccheck

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

TH2AO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1130

Software

Software Architecture & Technology Evolution

(1) Regular (2) 𝑜2 swapped with 𝑜1 at eighth (3) Anomalous event 𝑜𝑎
(last) position at eight (last) position

1 2 3 4 5 6 7 8
Event

−4.15

−4.10

−4.05

−4.00

−3.95

−3.90

S
co

re
s

1 2 3 4 5 6 7 8
Event

0

50

100

150

200

250

300

S
co

re
s

1 2 3 4 5 6 7 8
Event

0
20
40
60
80

100
120
140

S
co

re
s

Figure 6: To demonstrate the anomaly detection capabilities of our HMM model, we examine three cases on a synthetic log
sequence containing observable events 𝑜1, 𝑜2, and an anomalous event 𝑜𝑎. The HMM parameters were estimated using the
sequence excluding the last entry (the minimum required to avoid overfitting). First (left), a sequence with a repetitive 𝑜1,
𝑜2 pattern where the HMM likelihood score 𝑠 fluctuates around very low values, as expected. Second (center), swapping 𝑜2
and 𝑜1 in the last position disrupts the pattern, increasing the score 𝑠 noticeably. Finally, inserting the anomalous 𝑜𝑎 event at
the end causes a substantial 𝑠 spike, clearly detecting the improbable observation (right). This shows that the model detects
anomalies from both unlikely or novel log messages and unexpected sequencing of normal events. Small disruptions in
patterns or particularly improbable observations increase the model’s likelihood scores.

(1) Regular (2) 𝑜0 swapped with 𝑜1 at eighth (3) Anomalous event 𝑜𝑎
(last) position at eight (last) position

1 2 3 4 5 6 7 8
Event

−4.3

−4.2

−4.1

−4.0

S
co

re
s

1 2 3 4 5 6 7 8
Event

−4.4
−4.2
−4.0
−3.8
−3.6
−3.4
−3.2
−3.0

S
co

re
s

1 2 3 4 5 6 7 8
Event

−4.0
−3.5
−3.0
−2.5
−2.0
−1.5
−1.0
−0.5

S
co

re
s

Figure 7: To demonstrate the anomaly detection capabilities of our HMM model and its capacity to detect anomalies of
log entries which are also a part of parameter estimation, but are not so frequent we show results of anomaly detection
of identical sequences like it Fig. 6, but we use the entire sequence for training. The results show that the model detects
anomalies from both unlikely or novel log messages, even when the anomalous data are a part of the parameter estimation
of the HMM.

Log entry embedding Histogram of log entries

−10 −5 0 5 10 15 20

First dimension

−5

0

5

10

15

20

S
ec

on
d

di
m

en
si

on

Unique log entry (32 bins)
0

1

2

3

4

5

6

7

8

F
re

qu
en

cy

×106

Figure 8: Distribution of unique log entries (sum token
embeddings) embedded in 16 dimensions and then projected
to 2 dimensions with UMAP [18]. The absence of uniform
distribution of the embedded log messages shows that there
are only very few clusters of messages.

nullproc error at row 11 coincides with a sharp increase
in anomaly scores, as it is indicated in the bottom left and
right charts. This clear spike shows the method can detect
anomalous events.

In Fig. 4, we again see the method detecting an anomaly
as expected - the error message at row 5 leads to an abrupt
escalation in scores in the bottom left chart. This confirms
the method’s ability to identify potential issues.

Figure 5 showcases more nuance and complexity. Score
spikes at rows 9, 11, and 14 reveal multiple potential anoma-
lies according to the method. However, the spike at 14 stands
out as most prominent when viewed in the context of the
previous 50 entries in the bottom right chart. This example
illustrates that while the method can flag multiple possibil-
ities, further verification may be needed to determine the
most significant anomaly.

Finally, Fig. 2 highlights some limitations and challenges.
The high baseline of scores makes it harder to discern anoma-
lies from typical background noise for this log. Also, fre-
quent errors, even if minor, generate many potential false
positives. Despite these difficulties, a slight increase in the
score at row 17 still suggests the method can detect likely
anomalies if we take a closer look at the results.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

Software

Software Architecture & Technology Evolution

TH2AO01

1131

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

When errors produce clear spikes as in the first two ex-
amples in Fig. 3 and Fig. 4, the method reliably flags issues.
With more nuanced cases as in Fig. 5, multiple possibili-
ties may need further validation. For completeness, we also
pointed out an example where the proposed approach does
not work as reliably, shown in Fig. 2, but even with noisy
baseline data, salient anomalies can emerge.

FUTURE WORK
While this work demonstrates preliminary anomaly detec-

tion capabilities, there are several possibilities for improve-
ment in the future. More advanced techniques like [22] could
provide greater accuracy in identifying anomalies. Further-
more, increasing the log verbosity may lead to generating
more data that could allow us to deploy more parameter-rich
anomaly detection algorithms, as mentioned in related work.

Incorporating additional node data beyond just log mes-
sages holds promise for improving detection performance.
Characteristics like CPU, memory, network, and disk us-
age contain valuable information but effectively combining
such asynchronous numerical time series data with log mes-
sages poses modeling challenges. Developing algorithms
to jointly analyze these diverse data sources represents the
next milestone.

Furthermore, cybersecurity factors merit consideration
given rising threats. Our knowledge of infrastructure
specifics alongside network traffic flow logs could enable
modeling and identifying security-related anomalies.

CONCLUSION
This work presents a novel unsupervised approach for

detecting anomalies in log data. By representing log en-
tries with Word2Vec embeddings and modeling sequences
as HMMs, the method identifies anomalies by calculating
the likelihood of new log messages given history.

The results on real logs from European XFEL demonstrate
the capability to flag potential issues via salient score spikes
corresponding to errors or disruptions of typical patterns.
The approach detects anomalies without requiring labeled
data or extensive training and relies on modeling the behavior
of the node log via HMM.

However, challenges remain in handling noise and mini-
mizing false positives, as evidenced by certain noisy logs.

Code is available at https://github.com/
sulcantonin/LOG_ICALEPCS23

ACKNOWLEDGEMENTS
We acknowledge DESY (Hamburg, Germany), a member

of the Helmholtz Association HGF, for its support in pro-
viding resources and infrastructure. Furthermore, we would
like to thank all colleagues of the MCS and MSK groups as
well as the European XFEL team and management for their
contributions to this work and help in preparing this paper.

REFERENCES
[1] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the

analysis of software failures: A rule-based approach”, IEEE
Trans. Softw. Eng., vol. 39, no. 6, pp. 806–821, 2012.
doi:10.1109/TSE.2012.67

[2] T.-F. Yen et al., “Beehive: Large-scale log analysis for de-
tecting suspicious activity in enterprise networks”, in Proc.
29th Annu. Comput. Secur. Appl. Conf., 2013, pp. 199–208.

[3] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly
detection and diagnosis from system logs through deep learn-
ing”, in Proc. 2017 ACM SIGSAC Conf. Comput. Commun.
Secur., 2017, pp. 1285–1298.

[4] K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and
H. Zhang, “Automated it system failure prediction: A deep
learning approach”, in 2016 IEEE Int. Conf. Big Data (Big
Data), IEEE, 2016, pp. 1291–1300.

[5] X. Zhang et al., “Robust log-based anomaly detection on
unstable log data”, in Proc. 2019 27th ACM Jt. Meet. Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 807–
817.

[6] A. Vaswani et al., “Attention is all you need”, in Adv. Neural
Inf. Process. Syst. 30 (NIPS 2017), vol. 30, 2017.

[7] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detec-
tion via bert”, in 2021 Int. Jt. Conf. Neural Netw. (IJCNN),
IEEE, 2021, pp. 1–8.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding”, arXiv preprint, 2018.
doi:10.48550/arXiv.1810.04805

[9] M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger,
“Deep learning for anomaly detection in log data: A survey”,
Mach. Learn. Appl., vol. 12, p. 100 470, 2023.
doi:10.1016/j.mlwa.2023.100470

[10] C. Bertero, M. Roy, C. Sauvanaud, and G. Trédan, “Experi-
ence report: Log mining using natural language processing
and application to anomaly detection”, in 2017 IEEE 28th
Int. Symp. Softw. Reliab. Eng. (ISSRE), Toulouse, France,
IEEE, 2017, pp. 351–360.
doi:10.1109/ISSRE.2017.43

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality”, in Adv. Neural Inf. Process. Syst. 26 (NIPS
2013), vol. 26, 2013.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space”, arXiv
preprint, 2013. doi:10.48550/arXiv.1301.3781

[13] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.”, in USENIX
Annu. Tech. Conf., 2010, pp. 1–14.

[14] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “On-
line system problem detection by mining patterns of console
logs”, in 2009 Ninth IEEE Int. Conf. Data Min., IEEE, 2009,
pp. 588–597.

[15] S. Bird, E. Klein, and E. Loper, Natural language processing
with Python: analyzing text with the natural language toolkit.
” O’Reilly Media, Inc.”, 2009.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

TH2AO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1132

Software

Software Architecture & Technology Evolution

[16] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive
learning of sentence embeddings”, arXiv preprint, 2021.
doi:10.48550/arXiv.2104.08821

[17] N. Reimers and I. Gurevych, “Sentence-bert: Sentence em-
beddings using siamese bert-networks”, arXiv preprint,
2019. doi:10.48550/arXiv.1908.10084

[18] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform man-
ifold approximation and projection for dimension reduction”,
arXiv preprint, 2018.
doi:10.48550/arXiv.1802.03426

[19] J. Daniel, M. James H, et al., Speech and language process-
ing: An introduction to natural language processing, compu-

tational linguistics, and speech recognition. Prentice-Hall,
Inc., 2007.

[20] R. Řehůřek and P. Sojka, “Software Framework for Topic
Modelling with Large Corpora”, English, in Proc. LREC
2010 Workshop New Chall. NLP Framew., Valletta, Malta,
2010, pp. 45–50.

[21] Hmmlearn python package, https://maxbachmann.
github.io/RapidFuzz/

[22] N. Görnitz, M. Braun, and M. Kloft, “Hidden markov
anomaly detection”, in Int. Conf. Mach. Learn., PMLR, 2015,
pp. 1833–1842.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH2AO01

Software

Software Architecture & Technology Evolution

TH2AO01

1133

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

