
THE KARABO CONTROL SYSTEM
S. Hauf∗, N. Anakkappalla, J. T. Bin Taufik, V. Bondar, R. Costa, W. Ehsan, S. Esenov,

G. Flucke, A. Garcia-Tabares, G. Giovanetti, D. Goeries, D. Hickin, I. Karpics, A. Klimovskaia,
A. Parenti, A. Samadli, H. Santos, A. Silenzi, M. A. Smith, F. Sohn, M. Staffehl,

C. Youngman, European XFEL, Schenefeld, Germany

Abstract

The Karabo distributed control system has been developed
to address the challenging requirements of the European
X-ray Free Electron Laser facility, which include custom-
made hardware, and high data rates and volumes. Karabo
implements a broker-based SCADA environment. Exten-
sions to the core framework, called devices, provide control
of hardware, monitoring, data acquisition and online pro-
cessing on distributed hardware. Services for data logging
and for configuration management exist. The framework
exposes Python and C++ APIs, which enable developers to
quickly respond to requirements within an efficient devel-
opment environment. An AI driven device code generator
facilitates prototyping. Karabo’s GUI features an intuitive,
coding-free control panel builder. This allows non-software
engineers to create synoptic control views. This contribution
introduces the Karabo Control System out of the view of ap-
plication users and software developers. Emphasis is given
to Karabo’s asynchronous Python environment. We share
experience of running the European XFEL using a clean-
sheet developed control system, and discuss the availability
of the system as free and open source software.

INTRODUCTION

Karabo is a supervisory control and data acquisition
(SCADA) system, developed to meet control and data ac-
quisition requirements of the European X-ray Free Electron
Laser (European XFEL) [1]. Development of Karabo was
started in 2010, after after surveying other well-known sys-
tems such as Tango [2], EPICS [3], and DOOCS [4] as pos-
sible control solutions for the planned facility in 2009. At
the time of this survey, the anticipated complexity of the Eu-
ropean XFEL, and the data volumes generated at the facility
were found challenging to address with existing SCADA sys-
tems. Consequently, the development of Karabo was started.
Karabo is successfully being used to control the photon sys-
tems and instrumental end stations of the European XFEL
since 2017. In June 2023 it was made available to the public
as free and open source software [5]. In this contribution
we give a general overview of Karabo’s architecture, discuss
the operational benefits and drawbacks of this architecture,
and conclude with an outlook on how AI-driven agents can
facilitate development in the Karabo Ecosystem.

∗ steffen.hauf@xfel.eu

KARABO: CONCEPTS AND
ARCHITECTURE

There are two features of the European XFEL that distin-
guish it from earlier light sources and have direct impact on
the requirements for a control and data acquisition system at
the facility: the unique time structure of the accelerator that
enables MHz bunch repetition rates, and bespoke 2d imag-
ing detectors [6] capable of resolving this time structure,
resulting in data rates between 10-20 GB/s. Additionally,
the facility initially rapidly changed during construction and
commissioning, and nowadays instrumental setups are sub-
stantially modified depending on experimental needs, which
can change with each user group on a weekly basis. For the
control system the above translates to the following boundary
conditions:

• the control system needs to scale and can grow along-
side the facility,

• has time correlation woven into its fundamental data
model,

• process data rates of tens of GByte/s at latencies of a
few 100 ms,

• and cater to dynamic experimental setups that change
on different time scales,

while being highly reliable and resilient to failure events.
Karabo was written from scratch with these requirements in
mind.

Karabo’s Asynchronous and Event Driven Design
Karabo communicates by asynchronously exchanging

messages via a central message broker. For every Karabo
installation, a broker name space, referred to as a Karabo
topic exists, and distributed components are uniquely iden-
tifiable within this topic. Devices add functionality to the
base system in form or pluggable software libraries, and the
combination of all online and offline instances of devices in
a topic constitutes the control system for this topic.

A completely event-driven publish and subscribe signal-
slot messaging pattern is implemented on top of the dis-
tributed broker messaging. By subscribing to signals of
another instance updates are propagated through the system
without a need for polling. Any configuration update will
include timing information comprised of timestamp and a
unique timing identifier which facilitates correlation on a
global facility level. Any number of distributed components
can subscribe to a given signal which issued only once, re-
gardless of the number of subscribers, thereby minimizing
network traffic. Instance methods are registered as slots to
make them available throughout the distributed system.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06

TH1BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1120

Software

Control Frameworks for Accelerator & Experiment Control

The payload of any distributed message is a Karabo Hash.
This hierarchical key/value container additionally supports
per-element attribute assignment. The keys are strings and
as value the following data types are supported: integers,
floating points, strings, the Hash itself, vectors of all of these,
the Schema and a special container for multi-dimensional
arrays.

The European XFFEL is currently transitioning from Java
Messaging Service (JMS) broker technology [7] using an
Open Message Queue implementation, OpenMQ(C), to Rab-
bitMQ brokers [8], implementing an AMQP protocol [9].
This transition is expected to be completed by the end of
2024 and is necessary because the OpenMQ(C) library is not
actively supported anymore. AMQP in combination with
RabbitMQ will additionally add better fail-over support in
case of short broker or network disruptions.

A separate asynchronous communication channel exists
for ”large” data such as images or digitizer traces. These
pipeline connections are peer-2-peer TCP/IP connections
between two devices, specifically an output and an input
channel, that circumvent the broker. Pipeline connections
can sustain data rates of a few Gigabytes per second, and
can be configured to implement scatter/gather topologies,
with in-built buffer queues [10].

Karabo’s Application Programming Interfaces
Three application programming interfaces (API) facili-

tate developers to implement the distributed components of
Karabo, the devices. Each API has distinctive features from
which specific applications can benefit.

• The C++ API is beneficial for high-performance appli-
cations, or for integrating third-party C or C++ libraries.

• The Python Bound API provides high-performance
pipeline processing when an application additionally
needs to leverage Python packages like NumPy or SciPy.
Its name indicates that it mainly consists of Python-
binding on-top of the C++ API.

• The Middlelayer API (MDL) is a native-Python, low-
boilerplate integration option that excels through rapid
development and iteration cycles. We will discuss the
expressive Python code that can be written in this API
further in Sections and .

Table 1 lists a selection of tools and services critical in
operation of the facility and operational support. The choice
of API for each service is indicative of each API’s aforemen-
tioned strengths. A more detailed discussion of the examples
listed in the table can be found in [11].

Figure 1 shows the number of devices implemented in
each of the three APIs over time. It is evident from the figure,
that from 2019 onward, most new devices have been imple-
mented in the Middlelayer API. Feedback from developers
suggests that this is mainly due to its expressive syntax and
the rapid development cycles Python facilitates. However,
as is shown in Table 1, devices critical for operation of the
European XFEL leverage the specific strengths of the C++
and Bound APIs, and are actively being maintained and
extended. New devices requiring C++ or Python Bound ca-

Figure 1: Number of devices implemented in Karabo’s three
Application Programming Interfaces over time.

pabilities are also common: recent developments in the field
of online data reduction for instance are being implemented
on top of these.

The Karabo GUI: Karabo’s Graphical User Inter-
face

The Karabo GUI is the main operator interface for the
SCADA system for control tasks. It is a single, stand-alone
application, implemented in Python using the Qt [12] lay-
out manager. The GUI connects to GuiServer devices over
a TCP/IP connection, rather than the message broker, and
authenticates users upon login. The message format never-
theless is based on the Karabo Hash, and a Python native
implementation there-of. This design makes the GUI client
application highly portable: it is available on various Linux
flavors, as well as MacOs X and Microsoft Windows. TCP
connections additionally facilitate an increasingly impor-
tant feature: remote access to the system, using e.g., SSH
tunneling.

Configuration updates to the GUI are usually throttled to

Table 1: Examples of Important Karabo Services at the
European XFEL by API with Annotations

Service API Comments

Data Acquisition C++ Ingests data rates of
up to 20 GB/s.

Data Logging C++ Event-driven logging into
InfluxDB of 3 million
control parameters.

Beckhoff Integration C++ Communication Interface
to PLCs comprising
≈ 90 % of control
solutions at the facility.

Online Calibration Bound Online processing of up to
4000 images/s via pyCuda.

Karabacon MDL Scantool with GUI,
processing plugins
and scan history.

Recovery Portal MDL Time machine-like tool
capable of configuring
entire beam lines to a prior
point in time.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO06

1121

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

2 Hz for broker data, and dynamically for image or other
pipeline data, depending on client load. This design ensures
a responsive interface, even if many cameras are viewed.
Generally, connections to distributed components are estab-
lished via the GUI servers on a per-need basis - only if a
device is in view, will data from it be passed to the GUI.

The GUI application is organized into multiple panels,
each optimized for different tasks. Distinct features such
as projects and scene panels coexist with control system
essentials like a configuration panel to modify the configu-
ration of online and offline devices, and a system topology
view. Projects store the configurations of a selection of
device, alongside macros (small scripts), and scenes, in a
non-relational database [13].

To create synoptic views, any device property can be
dragged from the configuration panel and dropped onto a
scene. Scenes consist of controllers (widgets) appropriate to
a property’s data type. A scene-model [14] defines the layout
of scenes. Generally, operators interact with the control
system through these scenes or the configuration panel (as
shown in Fig. 2).

Using projects and scenes, operators can build flexible
user interfaces without coding. Alternatively, a program-
matic composition of scene models is possible, and can be
embedded into device code. These device-provided scenes
can be accessed by double-clicking on an instance in a topol-
ogy panel of the GUI.

IMPLICATIONS OF ARCHITECTURAL
CHOICES

In the following we report operational and development
implications of the architectural choices that were made for
Karabo, as observed in more than 5 years of facility oper-
ation. These observations are structured around the major
architectural choices identified in Section .

Event-driven and Asynchronous Design
From an operational point of view, the most important ob-

servation is that operators can struggle with an event-driven
system if they are accustomed to systems that mainly poll
data. Especially during commissioning and the early oper-
ation phase, a recurrent request was to implement polling
loops, as a reassurance that data was indeed updating. Such
requests rarely occur nowadays, and if so, are motivated by
the need to facilitate a particular type of experiment or data
analysis, rather than a lack of trust in the system in general.

From a software-engineering perspective the event driven
and asynchronous design has been a significant enabler in
two major aspects. Device composition and orchestration
is greatly simplified, and higher level functionality can fre-
quently be implemented without the need to know, or even
alter messaging specifics in more basic devices. Especially
in the middelayer API, it is straight-forward for a developer
to express even complex device coordination tasks, involv-
ing multiple subordinate devices, in an expressive fashion
with Python’s asyncio facilties. The following listing exem-

plifies this on an excerpt for the Karabacon Scantool source
code.
async def move (s e l f) :

f u t = [dev . move () f o r dev in s e l f . d e v i c e s]
awa i t g a t h e r (∗ f u t , r e t u r n _ e x c e p t i o n s =True)

Here, self.devices is a list of Device-Proxies, essentially
wrappers around a remote device in the distributed systems
that expose the device as a local Python object. The devices
here all adhere to a motor-interface, which guarantees that
there is an asynchronous move slot, which can be awaited
until the movement has completed. However, movements
should happen concurrently on many motors, so in the first
line we do not wait, but only trace future events. The gather
method will then asynchronously wait until all future events
have occurred. Practically, this means, that the listed move
method will execute motions on multiple motors concur-
rently, and only return when all motions have completed.

A second major advantage of event-driven updates man-
ifested itself in the seamless integration of the InfluxDB
time series database [15] as the main data logging backend
of Karabo [16]. InfluxDB’s ingestion APIs are structured
around the concept of non-regular time series data, and the
underlying database model will efficiently store such data.
InfluxDB, in combination with the Grafana front-end is the
enabling technology for the Data Operation Center, where
shift staff support all data-related services during operation.
Additionally, InfluxDB drives the Recovery Portal, a tool
which provides a time-machine like interface, through which
entire beam lines can be configured to a previous point in
time.

Language-Native APIs
Software, including SCADA systems, are initially often

developed with certain target programming languages in
mind. Over time, a motivation or requirement to support ad-
ditional languages may arise. Frequently, binding techniques
are then used. For the nowadays common case to expose
C/C++ code in Python, these are, e.g., Cython [17] (Karabo
Middelayer DOOCS binding), Python Ctypes (pyEpics [18],
pydoocs [19], Boost::Python [20] (pyTango [21], Karabo)
or PyBind11 [22] (future Karabo releases).

However, such bindings will often necessarily, and inten-
tionally, closely reflect the specifics of the language that
is being bound. This can lead to syntactic constructs one
would otherwise not usually find in the target language. The
following listings exemplify this by comparing a Karabo
interface definition between C++ and Python Bound APIs
of Karabo. For the Bound API the intention was to have syn-
tactic similarity to C++ to facilitate developers developing
in both APIs.
s t a t i c vo id e x p e c t e d P a r a m e t e r s (

ka r abo : : u t i l : : Schema& expec t e d) {

STRING_ELEMENT(expe c t e d)
. key (” _ s e r v e r I d _ ”)
. d i sp layedName (” _Serve r ID_ ”)
. adminAccess ()
. a s s i g n m e n t I n t e r n a l ()

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06

TH1BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1122

Software

Control Frameworks for Accelerator & Experiment Control

Figure 2: Karabo scenes showing an overview of the European XFEL SASE2 beam line, a vacuum section there-in, a
camera, and the scantool source selection dialog.

. n oDe f au l tVa l u e ()

. i n i t ()

. commit () ;
/ / . . .

}

@s ta t i cme thod
def e x p e c t e d P a r a m e t e r s (e xp e c t e d) :

(
STRING_ELEMENT(expe c t e d)
. key (” _ s e r v e r I d _ ”)
. d i sp layedName (” _Serve r ID_ ”)
. e x p e r t A c c e s s ()
. a s s i g n m e n t I n t e r n a l ()
. noDe f au l tVa l u e ()
. i n i t ()
. commit () ,

. . .
)

The Karabo Middlelayer API uses an alternative approach.
It is written solely in Python (when using the AMQP bro-
ker), and makes full use of Python’s advanced asynchronous
features (see Section , This facilitates a concise syntax that
looks like Python, rather then a domain-specific language
on top of Python, such that above code snippet in the Mid-
dlelayer API looks like this
_ s e r v e r I d _ = S t r i n g (

d i sp layedName=” _Serve r ID_ ” ,
r e q u i r e d A c c e s s L e v e l = Acces sLeve l . EXPERT,
a s s i gnmen t =Ass ignment . INTERNAL,

accessMode=AccessMode . INITONLY ,
d e f a u l t V a l u e =” __none__ ” ,
d aqPo l i c y =DaqPol i cy . OMIT)

.
The benefit is that a Python developer not familiar with

Karabo can be expected to understand these syntactic con-
structs without much additional training, and as is detailed in
Section , so will a Large Language Model trained on Python
sources.

Coding-free Synoptic Views - The Karabo GUI
A distinguishing feature of the Karabo GUI is the ease

with which scenes can be created to for synoptic views of
what is controlled. No coding is required, and the basic
steps are usually obvious to anyone who has worked with a
presentation software like Microsoft Powerpoint: select the
property to be added, drag it onto the scene, right-click select
the appropriate widget, and then position it. By repeating
these steps, synoptic views involving many devices, consist-
ing of widgets ranging from lamp indicators to camera views
can be created, and further styled.

At the European XFEL many operators make use Karabo’s
scene creation tools. This has the benefit, that operators can
style views to there needs without expert support, even on
an ad-hoc basis. At the same time programmatic scene
models allow devices to ship with curated scenes, which are
consistent over all instances of the same device class.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO06

1123

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

The downside of such simplicity is that scenes are often
created for ”one-time” use, and not curated or maintained
afterwards. Currently, the GUI does not track scene author
or ownership, and accordingly verification of the continuing
utility of a given scene is not always straight forward. We
foresee to resolve this issue through authentication facilities
that are currently being added to the GUI.

Scalability
Karabo’s dynamic topology removes the need of a central

database that defines the system. In operation, but even more
for developers, this has the advantage that Karabo can run
self-contained on a single host, and is quickly set up to do
so. Accordingly, in the development workflow at European
XFEL, devices usually see initial development on a stan-
dalone installation, are then added to continuous integration
environments, and finally deployed into the production en-
vironment using an Ansible tool-chain [23]. Development
on a production host, or even hot-patching a bug on such a
host, is a discouraged exception.

Especially the Karabo middlelayer API also has low hard-
ware requirements. In practice this has been utilized to install
Karabo on SoCs like Raspberry PIs, in order to e.g. interface
USB hardware. The Karabo Hash has been successfully de-
coded in Micropython [24] on ESP-32 microcontroller [25]
based IoT prototypes.

LLM AI Agents and Karabo
The release of ChatGPT (Chat Generative Pre-trained

Transformer) [26] in November 2022 resulted in a signifi-
cant shift in the general public’s perception of what artificial
intelligence in form of Large Language Models (LLM) is ca-
pable of. The free-of-charge web interface lead to significant
experimentation with the system, also by researchers. The
GPT model series, currently available as version GPT4 are
foundational models. Their training data set is so large, that
they can be directed to fulfil many tasks including writing,
and documenting code. Since Karabo has only been released
to the public domain recently, it is fair to assume that before
June 2023, the Karabo code base was not part of the training
data sets of ChatGPT, or early GPT4 versions. Nevertheless,
by giving sufficient context in the input prompt alone, the
models have been shown to be well suited to document code
implemented on-top of the Karabo framework, regardless
of the Karabo API.

Specifically, we pass the source code to the model, and
request it to output documentation in a diff format that is
fashion such that line numbers are not required in the out-
put. This is necessary, as currently LLMs models do not
reliably count. The following listing is the documentation
of a function used in the European XFEL data acquisition
software. Here GPT4 was used to batch-document approx
20,000 lines of code, adding or updating documentation as
required.
/∗∗
∗ @brie f Method t o g e t t h e t r a i n en v e l op e f o r
∗ a g i v en t r a i n ID .

∗
∗ Th i s method r e t r i e v e s t h e t r a i n en v e l op e f o r
∗ a g i v en t r a i n ID from a c o n t a i n e r . I f t h e
∗ t r a i n ID i s no t found i n t h e c o n t a i n e r ,
∗ a new t r a i n en v e l op e i s c r e a t e d and added
∗ t o t h e c o n t a i n e r .
∗
∗ @param c o n t a i n e r : a map c o n t a i n i n g t r a i n
∗ enve l ope s , i n d e x ed by t r a i n ID .
∗ @param t r a i n _ i d : t h e ID o f t h e t r a i n f o r
∗ which t o r e t r i e v e t h e en v e l op e .
∗
∗ @return A r e f e r e n c e t o t h e t r a i n en v e l op e
∗ f o r t h e g i v e n t r a i n ID .
∗ /

ka rabo : : u t i l : : Hash& g e t T r a i n E n v e l o p (
Enve l opCon t a i n e r& c o n t a i n e r ,
cons t t r a i n _ t& t r a i n _ i d) ;

Expanding on the documentation generation capabilities
of GPT4, in a next step we attempted to have the model code
a Karabo middlelayer device. These tests were done before
the Karabo open source release in June 2023, so a reasonable
assumption is, that the GPT4 model has not been trained with
Karabo source code. Instead, all information was provided
as a system prompt, consisting of approximately two screen
pages of condensed documentation for the Middlelayer API,
alongside meta-instructions to the model, such as to take user
input by the letter, and to output a single self-consistent code
block for all requests. Using a Jupyter notebook interface to
the OpenAI API (which GPT4 had largely coded using the
same strategy as well), an iterative approach for the following
tasks was implemented:

• Given a user prompt, produce a Karabo Middlelayer
device with the desired features

• In iterations, try instantiating this device, feeding excep-
tions back into the model, which was tasked to create
updated code based on these exceptions.

• Write a unit test for this device, and in iterations debug
the unit test.

• Given an additional prompt, create a device provided
scene for the device, debug this in iterations, and display
the result in the notebook. Here the LLM was given
a distinct system prompt, which describes the Karabo
scene model, and also defines that the underlying layout
model is similar to SVG.

A short demo of this process can be found at [27]. As
an example, Fig. 3 shows an AI-coded Karabo scene,
running on an AI-coded device. The code and scene prompts
describing this AI-generated implementation of a Kashiyama
NeoDry pump in Karabo are given in the Appendix.

Figure 3: A Karabo Scene produced by the GPT4 Large
Language Model.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06

TH1BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1124

Software

Control Frameworks for Accelerator & Experiment Control

While the produced code is certainly not production ready,
we intend to investigate use cases in advanced code template
generation. Our initial tests indicate that the Karabo Middle-
layer API is especially well suited for AI code generation, as
it is designed to avoid domain specific language constructs,
and prefer a Pythonic coding style.

CONCLUSION
Karabo is a mature supervisory control and data acqui-

sition system used for the photon systems and instruments
at the European XFEL. The Karabo GUI is the main user
interface when carrying out scientific experiments at the
facility.

Karabo has been designed to meet the data acquisition
requirements of large-scale research facilities: data can
be correlated through a unique timing identifier, and high-
performance data logging and acquisition systems exist. The
event-driven nature of the system ensures that data traffic is
minimized while significant changes are reliably propagated.
We have discussed how these design choices benefit the
facility, and developers implementing software in Karabo.

The system is freely available under a mixed MPL 2.0 and
GPLv3 license at GitHub.com [5].

APPENDIX
Prompts used for the LLM-coded Karabo Middlelayer

Device integrating a Kashyama Neodry pump.
Code: Write a Karabo Middlelayer Device that monitors the read-

back parameters of a Kashiyama NeoDry vacuum pump. The middlelayer
device connects over ethernet to the RS485 serial port on the pump. The
communication protocol to read the pump parameters is Modbus-RTU.
The middlelayer device should poll periodically the following read-only
parameters of the pump: trip counter, Trip info. 1 Factor, Trip info. 1
Inverter status, Trip info. 1 Frequency (High), Trip info. 1 Frequency
(Low), Trip info. 1 Current, Trip info. 1 Voltage, output current, input
power, DC voltage. You provide code for all these parameters, no just stubs
or a limited example set. These should be exposed as read-only Karabo
properties. Remember that any Karabo property is camelCased The only
user provided configuration inputs are the tcp address and port of the
serial converter, and a polling interval in seconds. These too are Karabo
properties. Please use pymodbus python module to implement rtu-over-tcp
modbus.

Scene: Please group all trip info related parameters in a box that is
labeled ”Trip Info”

REFERENCES
[1] M. Altarelli, “The European X-ray free-electron laser facility

in Hamburg”, Nucl. Instrum. Methods Phys. Res. B, vol. 269,
no. 24, pp. 2845–2849, 2011.
doi:10.1016/j.nimb.2011.04.034

[2] Tango, https://www.tango-controls.org/
[3] EPICS, https://www.epics-controls.org/
[4] DESY Object Oriented Control System (DOOCS), https:
//doocs.desy.de

[5] The Karabo SCADA Framework, https://github.com/
European-XFEL/Karabo

[6] M. Kuster et al., Detectors and calibration concept for the
European XFEL, Synchrotron Radiat. News, vol. 27, no. 4,
pp. 34–38, 2014. doi:10.1080/08940886.2014.930809

[7] M. Hapner, Java Message Service API tutorial and reference:
messaging for the J2EE platform. Addison-Wesley Profes-
sional, 2002.

[8] RabbitMQ, https://www.rabbitmq.com/amqp-0-9-1-
reference.html

[9] S. Vinoski, “Advanced message queuing protocol”, IEEE
Internet Comput., vol. 10, no. 6, pp. 87–89, 2006.
doi:10.1109/MIC.2006.116

[10] S. Hauf et al., “The Karabo distributed control system”, J.
Synchrotron Radiat., vol. 26, no. 5, pp. 1448–1461, 2019.
doi:10.1107/S1600577519006696

[11] D. Goeries et al., “The Karabo SCADA System at the
European XFEL”, Synchrotron Radiat. News, to be published.

[12] The Qt Company, https://www.qt.io
[13] W. Meier et al., “eXist: An open source native XML

database”, in NODe 2002: Web, Web-Services, and Database
Systems, 2003, 169-183.
doi:10.1007/3-540-36560-5_13

[14] Pydantic, https://pydantic.dev
[15] InfluxDB, InfluxData, https://www.influxdata.com
[16] G. Flucke et al., “Karabo Data Logging: InfluxDB Backend

and Grafana UI”, in Proc. ICALEPCS’21, Shanghai, China,
Oct. 2021, pp. 56–61.
doi:10.18429/JACoW-ICALEPCS2021-MOBL04

[17] S. Behnel et al., “Cython: The best of both worlds”, Comput.
Sci. Eng., vol. 13, no. 2, pp. 31–39, 2011.
doi:10.1109/MCSE.2010.118

[18] M. Newville, “PyEpics: Python Epics Channel Access”,
Consortium for Advanced Radiation Sciences, University
of Chicago, 2016.

[19] PyDOOCS, https://confluence.desy.de/
display/DOOCS/Python+Client+Interface#
PythonClientInterface-AboutPydoocs

[20] S. Koranne, “Boost c++ libraries”, in Handbook of Open
Source Tools, Boston, MA: Springer, 2011, pp. 127–143.
doi:10.1007/978-1-4419-7719-9_6

[21] S. Rubio-Manrique et al., “Dynamic Attributes and Other
Functional Flexibilities of PyTango”, in Proc. ICALEPCS’09,
Kobe, Japan, Oct. 2009, paper THP079, pp. 824–826.

[22] Seamless operability between C++ 11 and Python, https:
//github.com/pybind/pybind11.

[23] Lorin Hochstein and Rene Moser, Ansible: Up and Running:
Automating configuration management and deployment the
easy way. O’Reilly Media, Inc., 2017.

[24] Charles Bell, MicroPython for the Internet of Things. Springer,
2017. doi:10.1007/978-1-4842-3123-4

[25] A. Maier et al., “Comparative analysis and practical imple-
mentation of the ESP32 microcontroller module for the inter-
net of things”, in 2017 Internet Technol. Appl. (ITA), Wrex-
ham, UK, 2017, pp. 143–148.
doi:10.1109/ITECHA.2017.8101926

[26] ChatGPT release notes, https://help.openai.com/en/
articles/6825453-chatgpt-release-notes

[27] Karabo AI Coding, https://syncandshare.xfel.eu/
index.php/s/kt6NbSjJfMg7Pf5

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO06

1125

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

