
THE TANGO CONTROLS COLLABORATION STATUS IN 2023
T. Juerges, SKA Observatory, Jodrell Bank, United Kingdom

R. Bourtembourg, A. Götz, D. Lacoste, N.Leclercq, ESRF, Grenoble, France
G. Cuni, C. Pascual-Izarra, S. Rubio-Manrique, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain

B. Bertrand, V. Hardion, A.F. Joubert, MAXIV Sweden, Lund, Sweden
Y. Matveev, DESY, Hamburg, Germany

L. Pivetta, Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
T. Noga, M. Nabywaniec, L. Zytniak, S2Innovation, Kraków, Poland

G. Abeillé, SOLEIL, Gif-sur-Yvette, France
T. Braun, Byte Physics e. K., Annaburg, Germany

R. Auger-Williams, T. Ives, Observatory Sciences Ltd, St Ives, United Kingdom

Abstract
Since 2021 the Tango Controls collaboration has im-

proved and optimised its efforts in many areas. Not only have
Special Interest Group meetings (SIGs) been introduced to
speed up the adoption of new technologies or improvements,
the kernel has switched to a fixed six-month release cycle for
quicker adoption of stable kernel versions by the community.
CI/CD provides early feedback on test failures and compat-
ibility issues. Major code refactoring allowed for a much
more efficient use of developer resources. Relevant bug fixes,
improvements and new features are now adopted at a much
higher rate than ever before. The community participation
has also noticeably improved. cppTango switched to C++14
and the logging system is undergoing a major refactoring.
Among many new features and tools is jupyTango: Jupyter
Notebooks on Tango Controls steroids. PyTango is now
easy to install via binary wheels, old Python versions are no
longer supported, the build-system is switching to CMake,
and releases are now made much closer to stable cppTango
releases.

INTRODUCTION
In 1998, the European Synchrotron Radiation Facility

(ESRF) submitted a paper about TANGO, a control system
framework based on the paradigm of distributed objects, to
ICALEPCS 1999 [1]. Today, Tango is much more than a
piece of software. First, it is a well organized, very friendly
and amazingly fruitful collaboration gathering eleven major
institutes [2]. It is also the place of constant development,
enhancement, refactoring and innovation [3].

The success of the Tango collaboration relies on its organ-
isation, the members and developers and also on the underly-
ing contract that governs it. The financial contribution by the
core members allows the collaboration - represented by its
steering committee - to oversee its own budget and finance
events and technical subcontracting. The latter definitively
boosts the development of Tango. It is now much more
than a just framework. It is a rich and very active software
ecosystem in constant evolution. The original technology
still exists, but the core developers are preparing the future
on a daily basis. Tango constantly improves and tries to bene-

fit from the latest technical developments while maintaining
a strong backward compatibility for its users.

The present paper provides the reader with the latest news
from the Tango Controls collaboration. It notably proposes
a wide overview of both the organisational and the technical
activity around Tango.

CPPTANGO
Switch to Fixed Release Cycles

In the past years official cppTango releases were infre-
quent and usually years apart. These long release cycles
resulted in a number of issues:

• Users were not easily convinced to update, because the
old release had “somehow worked” for “n years” and
“we know the bugs”. Facilities that run in production
mode are very conservative when it comes to updating
core production software. They do not deploy a new
release just because it is the latest version and has more
features. This leads to the more serious problem of out-
dated installations that at some point cannot be updated
anymore at all.

• The change set of a cppTango release were usually
quite big, because many bug fixes, new features and
additions made it into a single release. Users would see
this as a mountain too big too climb, because “it has
changed everywhere”. An update simply appeared to be
too expensive and this contributed again to production
systems running outdated cppTango versions.

• The amount of changes made it hard for the users to find
the useful features that would make their lives much
easier.

• Packaging of cppTango was turned into a time consum-
ing and thus expensive problem, because dependencies
had already moved on a long time ago. This re-created
dependency-hell for every release and costs the cpp-
Tango team every time dearly. Distributions dropped
cppTango dependencies and suddenly a substitute had
to be found, investigated and adopted before a new re-
lease. This caused an incredible amount of additional
pressure just before a release.

• Long release cycles bore the risk of Tango Controls

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

TH1BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1100

Software

Control Frameworks for Accelerator & Experiment Control



packages being out of sync with distributions that also
have longer release cycles. This could easily lead to a
previous release of Tango Controls ending up in a new
distribution release. An example was Debian’s then
current release “Bullseye”. That it contained packages
of the then current Tango Controls release was pure
coincidence and had not been planned. Shorter release
cycles, e.g. every six months, could guarantee that
even distributions which have short release cycles of
six months (Ubuntu) would contain Tango Controls
packages that are in the worst case six months minus a
couple of days old.

• It took a very long time for bug fixes to make it
into a user’s production system. That is unless they
clone/build/deploy/cross fingers the repository which
worked for some but for others it does not.

• Long release cycles made it necessary to maintain back-
port branches for a very long time. Tango Develop-
ers had to scatter their limited time on too many is-
sues. More branches that needed to be maintained
meant more work and that meant less efficient use of
resources. The direct impact was that new cppTango
releases, which would contain major refactoring, major
rewrites or would break old APIs or ABIs, were moved
to a later date in the future again and again.

• Other Tango parts would then be forced to also main-
tain a backports branch for backwards compatibility
with cppTango. The resources there were also partially
bound to maintain old code branches.

In February 2022 a proposal for cppTango was made to
set up a fixed release cycle of six months. Releases would
be made, regardless how many bugs were fixed or how many
new features were implemented. The plan was to have every-
thing ready on the release date. The expected benefits were
that cppTango developers could better focus on relevant bug
fixes for the upcoming release, better plan new features and
as a result have a roadmap for future releases.

The proposal posed the risk that users would still not
update more often but the gains on the side of the cppTango
developers were viewed to be worth the change.

In an early April 2022 it was decided at a Tango Controls
kernel meeting, that a six month release cycle would be
adopted. Since the release of cppTango 9.4.0 on 2022-10-02,
the first release in the new six month release cycle, the team
has stayed true on the path and made three more releases
(9.3.6, 9.4.1, 9.4.2) with a fourth one scheduled for 2023-10-
09, with an initial release date 2023-10-02 but delayed by
one week.

So far the cppTango team is very satisfied with the switch
to fixed release cycles. Having a clear road map has indeed
allowed to be able to focus the resources much better. There
were a couple of bumps in the road that exposed weaknesses
in the current testing which are now being addressed. Those
weaknesses could not have been made visible if years would
pass between releases, because workarounds would be found
and problems not reported back to the cppTango team. This
directly contributes to the improvement of the quality of the

cppTango software.

Refactoring/Templatisation
CppTango development’s rate increased in all directions

in order to provide a better software for our users. Be it with
newer features, or bug fixes, but we also dedicated a lot of
effort into code refactoring. Because a smaller and more
maintainable code base is a way for us to dedicate more
time to develop the next feature, we have to work now on
improving our code for the future. In this effort we merged
a branch that refactored the code to use templates in some
places that lead to 7000 less lines of code for the exact same
functionality. And another one coming could further remove
another 4000 lines of code. So much less to worry about as
a developer.

Observability
The Tango logging service currently adopts the

log4cpp [4] design - which is based on the concept of a
“logger” routing the log to different targets through “appen-
ders”. For the Tango 10 series, it has been decided to extend
the Tango logging service towards an observability one. Be-
yond the buzzword coming for the world of microservices,
the aim is to instrument the Tango kernel to offer Open-
Telemetry [5] like features for traces, log and metrics. In
other words, the idea is to propagate some context informa-
tion along the distributed call stack so that the “observation
data” emitted by the involved (and totally independent) com-
ponents can easily be associated to a uniquely identified
transaction. Adopting OpenTelemetry - and the underlying
W3C standard for context propagation - offers the oppor-
tunity to use existing tools and services to store, retrieve
and display the information. However, in order to relax the
level of dependency on the OpenTelemetry API and SDKs,
the Tango observability features will be available through a
dedicated API hiding the implementation details. The first
Tango 10 release will first focus on tracing and profiling.

macOS Support
Full macOS support has been added with cppTango 9.4.0.

This gives software engineers the freedom to choose a de-
velopment platform (Linux, macOS, Windows) that they are
used to. Enabling tests to run on macOS is still a work in
progress. It is not expected that production systems will run
cppTango Device Servers on macOS.

PYTANGO
Python’s worldwide popularity is excellent, and still on

an upward trend [6]. This makes the PyTango Python-to-
C++ binding a very important part of the Tango Controls
ecosystem. PyTango provides a high-level application pro-
gramming interface which makes developing servers and
clients extremely easy.

Release Process
PyTango 9.4.2 was released in July 2023 [7]. Since the

previous review at ICALEPCS 2021 [8], there have been 6 re-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO03

1101

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



leases, with more than 144 merge requests and 615 commits.
There was one major release, 9.4.0, where Tango C++ library
support was switched to 9.4.x releases; NumPy became a
hard requirement and Python 2 support was removed.

The PyTango maintainers have committed to release a
new PyTango version at least twice per year, and within 1
month of cppTango releases.

The release process now includes one or more release
candidates. These allow downstream projects to test for re-
gressions before the final release. We try to test with the
continuous integration suites of some large projects using Py-
Tango. It has been beneficial, but it has also been a challenge
to get feedback from downstream projects timeously.

PyTango installation is now very simple, with a wide
variety of binary packages available. See the sections on
Conda and PyTango wheels below.

Support Policy
Starting from 9.4.2, PyTango implements a Python and

NumPy version support policy: any new release of PyTango
will support all minor versions of Python released 42 months
(but at minimum the two latest minor versions) prior to Py-
Tango release date and all minor versions of NumPy released
at that date that meet the requirements in “oldest-supported-
numpy” [9]. The policy is partly based on NumPy’s own
policy [10]. As Python minor versions are released annually,
this means that PyTango will drop support for the oldest
minor Python version every year, and also gain support for
a new minor version every year.

This resulted in PyTango 9.4.2 being officially released for
Python 3.9, 3.10 and 3.11. Such a policy may cause users to
go to considerable lengths to update their systems to newer
Python versions, but the work will have to be done anyway,
the question is how long it will be delayed. At the same
time, this opens up the possibility of adding new features to
PyTango.

Examples of planned features which are now possible:
• New cmake-based build system (requires at least

Python 3.8). This should simplify PyTango installation
in case if there are not corresponding wheels, especially
on Windows.

• Declaration of attributes, properties and commands
with type hints (requires at least Python 3.9). This
should not only improve code readability, but should
also allow the use of static code checkers.

Unlike cppTango, PyTango does not provide so-called
long-term-support. While cppTango provides fixes and re-
leases on both the 9.3.x and 9.4.x branches, PyTango only
has the resources to target the most recent cppTango release.

People
There has been an increase in the number of PyTango

contributors. The 2019 to 2021 releases had 13 contribu-
tors, compared to the 28 contributors for the 2021 to 2023
releases. A new maintainer has joined the team. We started
regular meetings for developers, twice a month. This has
improved the communication between all the developers

and also provides an accountability/reminder mechanism
for work in progress. The meeting schedule [11] and min-
utes [12] are publicly available to aid transparency and to
make it easy for new people to join.

JTANGO
The Java core library relies on open source libraries

Jacorb [13] and JeroMQ [14]; it is available in the de-facto
Java standard Maven Central repository [15]. While the
server API is used in a few institutes of the Tango collabo-
ration, generic tools such as Jive, ATKPanel or Astor rely
on the client API of JTango. JTango is quite stable, recent
releases (latest is 9.7.2) deliver bug fixes and small improve-
ments. The road map for the next years will firstly focused
on improving the quality of the client API by introducing
logging that is already available on the server side (based on
SLF4J [16]) and adding unit tests. Secondly, we will con-
centrate on implementing the new Tango v10 functionalities
detailed in the paragraph “Community meetings” further
down (alarm event, observability...).

TANGO DATABASE
The TangoDatabase serves as phone book and configu-

ration storage device server for a given Tango setup. Work
items in the last iterations contained the move to cmake [17]
as build system, dropping the existing build scripts for au-
tomake/autotools and Visual Studio solutions. The cur-
rent version now builds on Linux, Windows and MacOSX
(X86_64 and AARCH64). An ongoing effort to add unit
tests was also started, these are currently run under Linux
with MySQL/MariaDB and cover roughly one quarter of
the source code. One of the side benefits of this effort is
also that it now builds much more reliable against various
MySQL/MariaDB versions. Besides various bug fixes two
more new noteworthy features are the switch to InnoDB
as database engine, thus making the response times much
smaller and the addition of an IP-based access control list.

HDB++
The HDB++ project [18] is a high performance event-

driven archiving system designed and built for Tango
Controls. HDB++ supports several backends, including
MySQL/MariaDB, PostgreSQL, TimescaleDB, and recently
SQLite, exploiting an abstraction library, named libhdb++,
and a specific implementation library for each of the sup-
ported backends. Recent developments added the support
for a new backend, based on SQLite database engine, and a
Python extraction library. HDB++ developers and users meet
online every two months on average to discuss issues. In
2022 an in-person SIG workshop was organised and hosted
by ASTRON, with special focus on archiving and HDB++.

POGO
Pogo [19], the code generator for tango device servers is

a central piece of Tango Controls. It generates the boiler

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

TH1BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1102

Software

Control Frameworks for Accelerator & Experiment Control



plate code when developing device servers to let developers
focus solely on the interaction with the hardware. It can gen-
erate code for three main flavours of Tango: Python, Java
and C++. Following the recent upgrade in the community
both for Java tools and their deployment to Maven, and the
accelerated pace of development for cppTango, Pogo was
greatly improved recently, and more improvements are com-
ing. First, as it is a tool written in Java, it followed the recent
improvement in the way Java tools from the JTango commu-
nity are distributed and is now available directly on Maven
Central [13]. It benefited from the work done on the Java
stack, as, from inception it was decided to make the deploy-
ment of Tango Controls tools via Maven central common.
More details about this in the section on CI/CD. Another
big step to the ease of deployment for Pogo, is that it is now
available on Conda. Thanks again to a major effort from the
community to bring as many tools from Tango Controls to
Conda, this is now the case for Pogo too. Work was done on
testing Pogo as well. As CI/CD is now used for deployment,
there was also some work put on developing some basics
tests for Pogo. As the codebase is not easy to work on, in
the past a fix somewhere could break in other places, hence
tests were needed for some time now. So far the coverage
is limited but there are issues to improve upon it and a plan
to test more thoroughly the code generated, be it in Python,
Java, or C++. As the recent versions of cppTango simplified
the cppTango’s server API, it was necessary for Pogo to
follow this development and let developers generate device
servers using the latest version of cppTango. This was done
in parallel with cppTango’s development, and version 9.8
of Pogo, full compliance with cppTango 9.4 was ready at
the same time that cppTango was released. However this
change of API is not without consequences, and there are
now support two branches for Pogo, the 9.7 branch support-
ing the cppTango 9.3 branch, and the 9.8 supporting the
newer cppTango versions. Both branches are under active
development and will receive bugfixes if needed.

Learning from cppTango’s eager adoption of cmake, our
code generator is currently tested with further cmake inte-
gration. The next minor release is expected to completely
rethink the way code for device servers is organized, with
cmake at its core. In the current setup a device server con-
tains one or more tango classes, but they are generated in a
flat hierarchy, there is no clear separation between what is a
class and a server, and all the code is built into a single binary.
With the forthcoming changes there will be a clear separation
of the code between the server and the Tango classes. It will
be possible (and in certain cases recommended) to compile
the latter as libraries to be able to reuse them across multiple
device servers. The code will be organized in a more classic
hierarchy, with a separation between implementation files
and public header. To finish, cmake will be the only build
system supported for C++ projects, but the integration will
be much more robust and modern than what is currently
done. With the use of modern cmake, fully leveraging the
power of targets, find modules and so on. Another important
step expected before the end of the year is the support of

Java 17. Java 8 had a long live cycle, but after it took some
time to move to Java 11, the new releases seem to be adopted
faster by the common distributions supported, and so Pogo
need to follow. This development was delayed a bit as one
of the main dependencies used struggled to get up to date,
but now everything seems to be in place for Pogo to have a
Java 17 release.

Pogo is having its fair share of development, and a lot
of time was spent to keep it up to date. But with all of
it came the major realization that to go faster and further
will not be possible. Pogo uses the xtext/xtend [20] frame-
work that relies on community support. One of the major
dependencies is not maintained any more and furthermore
advises not to use this kind of approach for code genera-
tion [21]. In the light of all this, development was started
to completely rewrite Pogo from scratch. This rewrite will
be done in Python, rely on templates to generate the codes
via jinja2 [22] and will be command line only, at least for
the first releases. An effort will be made to maintain com-
patibility with the old version, by supporting the same input
files for instance, but the protected regions paradigm will not
be used anymore, and this will surely break the backward
compatibility. In the long run the goal is to reduce the depen-
dency on big frameworks, drastically reduce the code base
and make it cleaner and easier to extend with new features.
Such as supporting other types of input files like json or
yaml that could be easily crafted by hand or generated by
other tools. Or add the possibility to generate code for a
server in multiple languages, generating a simulated device
that would let a developer test a device server right after it
was generated through Pogo. All of these would prove really
difficult to do with the current Pogo implementation, yet
it would add tremendous value to Pogo. This rewrite will
hopefully not take too much time, and Pogo will stay a major
part of Tango in the future.

CI/CD

With the move to Gitlab as git forge, the tango project also
gained out-of-the-box support for the builtin CI/CD infras-
tructure. This was quickly adopted and replaced Travis/Ap-
pveyor. With the development speeding up prior to the re-
leases, it became quickly apparent that the limited number
of freely available CI/CD minutes from Gitlab would not
suffice. It was therefore decided to leverage the power of the
community and host Gitlab runners at each institute. Cur-
rently four institutes provide Linux Docker runners, with
more institutes currently rolling out windows runners. With
these unlimited number of CI/CD minutes we are now able
to test each PR of the major projects, run the tests and de-
ploy the releases. A recent example is the automatic release
creation on repository tagging of the TangoSourceDistribu-
tion and the fully automatic release package upload for the
cppTango windows binaries.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO03

1103

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



TANGOBOX
The TangoBox, which is a virtual machine image run-

ning the pre-installed and pre-built Tango environment, has
been upgraded to version 10. Due to the steadily increas-
ing demand for Python 3 integration with Tango Controls
and the growing number of web applications and services
connected with the control system, the newest version in-
cludes full support of Python 3 and web applications such
as Taranta. Packages that are a part of the core ecosystem
but are not Python-related, have also been updated to their
newest released versions. Among the installed packages are:

• Tango Source Distribution along with PyTango and
Tango Access Control - 9.3.5

• Taurus - 5.1.5 (including HDB++ support)
• Sardana - 3.3.5
• PANIC - 9.0.1
• Taranta - 1.3.12
• HDB++

The image also provides full support of Docker for increased
local development capabilities. TangoBox is running on
Ubuntu 22.04 LTS, which is the latest LTS release, and its
graphical user interface is Xfce - the lightweight alternative
to GNOME. The only piece of software that user needs is a
virtualization engine that supports the Open Virtualization
Format (.ova files), to which they should import the pre-built
TangoBox virtual machine image. Everything that is inside
has been pre-configured and ready to go.

TANGO CONTROLS COLLABORATION
The Tango Controls Collaboration has continued to thrive

thanks to the collaboration contract which was renewed
for another 5 years by all 11 partners in 2021. The sub-
contracting contracts were also renewed for another 2 years
until 2026 with 3 companies. The support of the 3 com-
panies is essential to ensuring that Tango continues to get
regular releases and improvements. The community has
been innovative in organising a new series of so-called SIG
meetings on special topics (details below). The regular com-
munity meetings have been held in hybrid mode with as
many attendees in person as remotely.

Community Meetings
The, now annual, community meeting offers the Tango

experts and users to share the latest news on their respective
activities. Since ICALEPCS’21, the 36𝑡ℎ [23] and 37𝑡ℎ [24]
edition of the series have been hosted by MaxIV (Lund,
Sweden) and SKAO (Jodrell Bank, UK). Each event gath-
ered more than one hundred attendees from major institutes
representing various research domains - like synchrotron
radiation sources, laser facilities and observatories. Beyond
the traditional status report from the institutes and the latest
Tango ecosystem news, the Max-IV event demonstrated the
increasing interest for web-based solutions. Taranta [25], the
Tango offer for web-based dashboards, has notably reached a
level of maturity that will definitely boost its adoption. The
most remarkable highlight of the SKAO event is certainly

the official announcement of Tango technical roadmap for
the upcoming years. Here are the foreseen features for the
next major releases.

• Tango v10
• New alarm event
• Warning and alarm hysteresis
• New observability service based on OpenTeleme-

try (for tracing and profiling)
• Extended version information of the full software

stack on which a device server relies
• Tango v11

• New datatype: DevDict. A python like dictionary
of key/value pairs.

• Tango v12
• Multi-parameter commands breaking the current

limit of one argument per command. The DevDict
provided by V11 will certainly help here.

• Tango v13
• New multi-dimensional arrays breaking the cur-

rent limit of the 2D matrix.

SIG Meetings
Facing regular requests for discussions dedicated to spe-

cific topics, the Tango steering committee to launch a series
of Special Interest Group (SIG) meetings. Beyond the idea
of focusing on a particular subject, the aim is also to ratio-
nalize the organization of each event by adopting a common
workshop format. This allows to set up a clear agenda to
guide the discussions and ensure their fruitfulness. So far,
four events have been organized [26].

Jupyter for Controls - SKAO Headquarter - UK -
September 2022 In the Tango community, several tools
relying on Jupyter [27] have been developed and evaluated as
an interface to a Tango control system. For the attendees, the
aim of this meeting was to share their respective experience
with Jupyter and evaluate its potential usage as a client plat-
form. jupyTango [28], a feature rich Tango client running in
the notebook, has been presented. This tool notably allows
asynchronous tasks to run in their own cell without blocking
the whole interface - offering the ability to update plots and
widgets in the background. It had been identified as a po-
tential tool for systems commissioning. ASTRON [29] also
demonstrated its usage of Jupyter for scripting and more.

The Tango Archiving Database (HDB++) - ASTRON
- Netherlands - November 2022 The second Tango SIG
Meeting [30] was organized as a hybrid (face to face and re-
mote) meeting by ASTRON in Dwingeloo, The Netherlands.
This 1.5 day event focused on practical demonstrations of
attendees’ recent work on HDB++ core and the related tools.
This workshop also offered the opportunity to exchange
about the future of Tango archiving system. The idea of

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

TH1BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1104

Software

Control Frameworks for Accelerator & Experiment Control



creating a SQLite backend for the CI tests was notably dis-
cussed. Since then, a first version of this backend has been
delivered. See paper [18] at this conference for more details
on the latest developments of HDB++.

The Future of GUIs (TAURUS) - ESRF - France -
March 2023 In the TANGO community, TAURUS [31]
is the de facto standard for those searching for a powerful
python-based solution for CLIs and GUIs. Initially devel-
oped at the ALBA Synchrotron (Spain), TAURUS is also
a successful open-source project widely adopted by major
scientific facilities for their daily operation. After 15 years
of constant development, the project has reached a key point
in its history. The emergence of web-based solutions tends
to challenge the existence of traditional GUIs frameworks by
inviting them to redefine their role or to justify their main-
tenance beyond the catalog of existing applications. The
historical TAURUS maintainers team is also changing and
could offer new opportunities in terms of involvement in
the life cycle of the project. During this event, speakers and
attendees had the opportunity to share their experience with
TAURUS and present their strategy and thoughts regarding
the future of their graphical interfaces. The organizational
and technical future of TAURUS has also been discussed.
The main finding of this SIG meeting is the growing adoption
of python-based and web-based solutions to the detriment
of Java.

Roadmap to Tango 10 (a.k.a. IDLv6 Meeting) - ALBA
- Spain - May 2023 This event was dedicated to the
roadmap for the first releases of the Tango 10 series. The
main aim was to identify the new features and project them
on a timeline of releases. See the Community Meetings
paragraph for more details about the Tango roadmap.

PACKAGING
Tango Source Distribution

The TangoSourceDistribution bundles a large number
of tango related projects into one package. As with other
C++ tango projects the build system was moved from au-
tomake/autotools and Visual Studio projects to CMake [17].
This also made it possible to build a Windows installer in
CI (see next section) for every pull request and release.

Windows Installer
A Windows installer has been created to simplify the in-

stallation of Tango on Windows, which up until now has
always been a manual process. The installer is built automat-
ically by a GitLab CI job meaning that it is quick and easy to
create a new release of the installer. The CI job downloads
all of the required files for the installer from GitLab, builds
the C++ applications, creates a Windows Inno Setup [32]
script file, and finally builds the installer executable (exe)
file. A user can then simply use this executable to install all
of the Tango applications on a Windows machine.

Debian
The Tango debian packages have recently been upgraded

to cppTango/pytango versions 9.4.2 by Freexian [33]. As
the debian packages serve as basis for derived distributions
like Ubuntu, the next Ubuntu release will also include cpp-
Tango/pytango version 9.4.2.

RPM
Tango RPM packages are still built using Copr [34], a

build system and infrastructure provided by Fedora. Cpp-
Tango 9.3 is available for both CentOS 7 and 8, but 9.4 was
only built for CentOS 8. Support for CentOS 7 was dropped
due to cmake being too old.

Conda
Two years ago, only a few Tango packages could be in-

stalled from conda-forge [35] and only for Linux x86_64:
tango-idl, cpptango, tango-database, tango-admin, tango-
test, pytango and itango. Since then, more packages, C++,
Python or Java, and more platforms have been added: Linux,
including x86_64, aarch64 and ppc64le architectures, Win-
dows and macOS (both Intel and Apple silicon) as shown in
Fig. 1.

Figure 1: Main Tango packages on conda-forge.

On Linux, cppTango debug symbols have been moved to a
separate package, keeping the main package small but allow-
ing users to debug just by installing cpptango-dbg. Tango
device servers for HDB++ Event Subscriber and Configura-
tion Manager can also be installed from conda-forge (only
with timescale support). On the Python side, some work
was done to be able to install taurus and sardana (includ-
ing Qt) on most platforms and architectures. This required
re-building some of their dependencies like pythonqwt or
guiqwt. Some effort was also done to provide Java appli-
cations. The initial goal was to publish individual jars to
build jive and astor. This proved not possible as they de-
pend on each other. In the end, they were published as fat
JAR. Nonetheless, jtango, tango-atk, tango-atk-panel and
tango-atk-tuning are also present. Astor was published as
tango-astor, as astor was already taken by a Python package.

It has never been easier to install the Tango packages on
all platforms.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO03

1105

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



PyTango Wheels
PyTango wheels have been available for Windows for a

while (since 9.2.0), but even for 9.3.6, they were only built for
Python less than 3.8. On other platforms, installing pytango
with pip wasn’t advised as it had to be built from the source
distribution. This required to have the proper dependencies
and build tools available, and was slow. Since version 9.4, we
build wheels for Linux (i686, x86_64 and aarch64), macOS
(x86_64 and arm64) and Windows (win32 and win_amd64),
supporting Python 3.9 to 3.11. That’s 21 Python wheels
for PyTango 9.4.2. This is a huge improvement but wasn’t
trivial. Building Windows wheels on AppVeyor currently
takes more than 5 hours. Linux and macOS wheels are built
on GitLab CI and the pipeline takes about 90 minutes. And
that doesn’t take into account the four hours to build the
docker images with all the dependencies. The main issue is
the aarch64 architecture which is done using emulation and
explains the compilation time. This is worth it as it makes
installing pytango with pip really easy on most platforms
and architectures. Using pip is the now the recommended
way to start with PyTango.

CONCLUSION
The Tango Controls toolkit has experienced a major boost

in kernel development thanks to additional kernel developers
and the continued support provided by dedicated external
companies. All the libraries have seen new releases with a
fixed period release cycle every 6 months being introduced.
Packaging has improved considerably for all platforms (in-
cluding Windows) and it has never been easier to install
Tango. A new version of the network interface (IDLv6) is
under development and will be released as part of Tango V10.
Major refactoring has taken place to make the C++ library
easier to maintain in the long term which has increased the
lifetime of the current implementation. The Tango Controls
community is thriving with new projects adopting Tango
and new Special Interest Group (SIG) meetings on topics of
common interest.

ACKNOWLEDGEMENTS
The Tango Controls community acknowledges the finan-

cial and in-kind contributions provided by the 11 partners
who are members of the Tango Controls Collaboration -
ALBA, DESY, ELETTRA, ESRF, INAF, MAX-IV, SKAO,
SARAO, SOLARIS, SOLEIL and ELI-ERIC which has en-
abled much of the work above to happen.

REFERENCES
[1] J.-M. Chaize, A. Götz, W.-D. Klotz, J. Meyer, M. Perez, and

E. Taurel, “TANGO - An Object Oriented Control System
Based on CORBA”, in Proc. ICALEPCS’99, Trieste, Italy,
Oct. 1999, paper WA2I01, pp. 475–479.

[2] About Tango, https://www.tango-controls.org/
about-us

[3] The Tango gitlab repository, https://gitlab.com/
tango-controls

[4] log4cpp, https://log4cpp.sourceforge.net
[5] OpenTelemetry, https://opentelemetry.io
[6] Stack Overflow Developer Survey 2023 - most popular

languages, https://survey.stackoverflow.co/2023/
#most-popular-technologies-language

[7] PyTango 9.4.2 release, https://gitlab.com/tango-
controls/pytango/-/releases/v9.4.2

[8] A. Götz et al., “The Tango Controls Collaboration Status in
2021”, in Proc. ICALEPCS’21, Shanghai, China, Oct. 2021,
pp. 544–549.
doi:10.18429/JACoW-ICALEPCS2021-WEAR01

[9] oldest-supported-numpy package on PyPI, https://pypi.
org/project/oldest-supported-numpy/

[10] NEP 29 — Recommend Python and NumPy version sup-
port as a community policy standard, https://numpy.org/
neps/nep-0029-deprecation_policy.html

[11] Tango Controls meetings - Indico, https://indico.
tango-controls.org

[12] Minutes from PyTango Developers’ Meetings,
https://gitlab.com/tango-controls/meeting-
minutes/pytango

[13] JacORB, https://www.jacorb.org/
[14] JeroMQ, https://github.com/zeromq/jeromq
[15] Maven central repository, https://mvnrepository.com/

artifact/org.tango-controls

[16] SLF4J, https://www.slf4j.org/
[17] CMake, https://cmake.org
[18] D. Lacoste et al., “New developements on HDB++, the high-

performance data archiving for Tango Controls”, presented
at ICALEPCS’23, Cape Town, South Africa, 2023, paper
THMBCMO01, this conference.

[19] Pogo repository, https://gitlab.com/tango-
controls/pogo/

[20] Xtext/Xtend home page, https://eclipse.dev/Xtext/
[21] Protected regions repository, https://github.com/

danieldietrich/xtext-protected-regions

[22] Jinja, https://palletsprojects.com/p/jinja/
[23] The 36th Tango community meeting (Indico event), https:

//indico.tango-controls.org/event/51/

[24] The 37th Tango community meeting (Indico event), https:
//indico.tango-controls.org/event/57/

[25] The Taranta gitlab repository, https://gitlab.com/
tango-controls/web/taranta

[26] Tango Controls Indico, https://indico.tango-
controls.org

[27] Project Jupyter, https://jupyter.org
[28] The ASTRON radio telescope, https://www.astron.nl
[29] jupyTango Gitlab repository, https://gitlab.com/

tango-controls/jupyTango

[30] HDB++ GitLab group, https://gitlab.com/tango-
controls/hdbpp

[31] Taurus SCADA, https://taurus-scada.org/index.
html

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

TH1BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1106

Software

Control Frameworks for Accelerator & Experiment Control



[32] Inno Setup, https://jrsoftware.org
[33] Freexian, https://www.freexian.com
[34] Tango Copr, https://copr.fedorainfracloud.org/

coprs/g/tango-controls/tango

[35] Conda-Forge Community, “The conda-forge Project:
Community-based Software Distribution Built on the
conda Package Format and Ecosystem”, Zenodo, 2015.
doi:10.5281/zenodo.4774216

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03

Software

Control Frameworks for Accelerator & Experiment Control

TH1BCO03

1107

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


