19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-M04BC0OS

APPLES TO ORANGES: A COMPARISON OF EPICS BUILD AND
DEPLOYMENT SYSTEMS

S. Rose*, D. Araujo’, A. Lindh Olsson*, L. Magalhdes®
European Spallation Source ERIC, Lund, Sweden

Abstract

ESS currently uses two different systems for managing
the build and deployment of EPICS modules. Both of these
use modules that are packaged and prepared to be dynami-
cally loaded into soft IOCs, based on the require module
developed at PSI. The difference is the deployment: For the
accelerator, we use a custom python script to define and
build an EPICS environment which is then distributed on a
global NFS share to the production and lab networks. For the
neutron instrumentation side, in contrast, we use Conda to
build individual EPICS environments, where the individual
packages are stored on a shared artifactory server.

In this paper we will provide an overview of some of the
challenges, contrasts, and lessons learned from these two
different but related approaches to EPICS module deploy-
ment.

E3

History

The ESS EPICS [1] Environment (e3) [2] is based on the
approach developed at PST which uses the standard EPICS
base executable softIocPVA to run IOCs. Instead of stati-
cally or dynamically linking support modules and compiling
them into a custom binary executable, we instead configure
and dynamically load the provided shared libraries. This is
all done using the module require [3] which acts as both
a parallel build system for EPICS modules, as well as an
EPICS module in its own right that dynamically loads other
EPICS modules.

e3 was developed initially by Jeong Han Lee, who intro-
duced the notion of a “wrapper”. After he left, the devel-
opment and maintenance of e3 was taken over by a small
team (the e3 team). This team initially consisted of repre-
sentatives from all of the main groups that comprise ICS
(Integrated Control Systems): Software, Hardware and In-
tegration, and Infrastructure. While the team has evolved
over time, it maintains its interdisciplinary nature and tight
connections with all of its stakeholders.

Structure

One challenge when with working with community
EPICS code is that one will often need to provide site-
specific customisation to each support module; this presents,
for example, a challenge when needing to update a module:
how does one keep local changes in sync? How does one
track that which comes from the community, and that which
is specific to your site?

* simon.rose @ess.eu
 douglas.araujo@ess.eu

* Anders.LindhOlsson @ess.cu
§ lucas.magalhaes @ess.eu

Software

Software Best Practices

e3 resolves this by using a “wrapper”!: a separate repos-
itory which contains a reference to the community code
together with any site-specific modifications that are nec-
essary. This can include patches, site-specific database or
template files, as well as any other site-specific build or
run-time configuration. It also includes metadata such as a
description of the dependencies required to build and load
the module into an IOC; see Fig. 1.

el-mrfioc2

git reference

patches
.db files
startup snippets

Dependen devlib2

Figure 1: Example e3 wrapper

This approach allows for development in line with commu-
nity collaboration and release best-practices: we can update
community releases if critical errors are found (such as a
recent caPutLog memory leak), as well as develop and test
patches before submitting them to the community for review.

In order to do this, €3 has opted to use a fork of PSI’s
require module. In contrast to traditional EPICS IOC:s, this
module provides dynamic run-time loading and registering
of support modules. It requires additional build configura-
tion, but handles some rudimentary run-time dependency
resolution.

One of our main divergences from the PSI require mod-
ule is our use of wrappers. However, there are other signifi-
cant changes such as our use of “virtual environments”, as
well as a standard versioning schema which distinguishes
site-specific changes from community releases. This is nec-
essary to avoid (among other things) so-called ‘dependency
hell’ (see Fig. 2).

built

against
asyn R4-42
asyn R4-43

gepe® sl Stream 2.8.24

depends on

Figure 2: Dependency hell

This is handled by appending a revision number to the
version. Two builds that use the same source version but dif-

1 Note that in Conda this is called a ‘recipe’; however, that name distinction
is not particularly relevant.

MO04BC005
205

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

= Content from this work mag be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

fer either in dependency or wrapper configuration will have
different revision numbers. This allows us, for example, to
handle the scenario in Fig. 2 by re-building Streamdevice,
but built against a different version of asyn (see Fig. 3).

Community .
version 2.8.24 Revision

number
[Stream 2.8.24+0 asyn R4-42]

foo Stream 2.8.24+1 asyn R4-43]

"""""""""" Revision
number

Figure 3: Using revision numbers to fix dependency issues

We should further note that there are several ways of han-
dling this type of issue; Conda itself uses both a build num-
ber and a hash of the dependencies to differentiate between
builds that use the same source.

Conda and ESS

B. Bertrand and A. Harrisson presented [4] an alternative
approach to managing a shared EPICS environment which
uses the open-source package manager Conda [5] to build
and manage the pool of support modules as well as the indi-
vidual IOCs. Instead of using a shared NFS server, Conda
uses an ESS-hosted artifactory server; the individual IOCs
reside in their own distinct Conda “environments”, which
contain the necessary dependencies in order to run.

A proof-of-concept for using this approach at scale was
designed and presented. However, some potential issues that
might affect the then upcoming commisioning stages were
identified. As a result, the e3 team switched to developing a
more standard NFS-based approach for EPICS distribution.
In the meantime, due to a different commisioning sched-
ule for the Neutron instrumentation team, we were able to
continue developing the conda-based solution for their use.

CURRENT APPROACH
NFS e3

In order to satisfy our requirements, we further developed
the build backend (require and its custom build rules),
as well as developed a completely new python-based build
frontend (e3-build) which acts as a build and environment
manager. The input to this build manager is a specification,
as shown in Fig. 4, and is broadly a list of tagged commits
to the wrappers. e3-build then takes these commits, reads
in the dependency information specified therein, determines
an appropriate and consistent build order, and then builds
any necessary modules that are missing from the current
environment.

ESS then uses GitLab-CI [6] to automatically build and
deploy new modules, (see Fig. 5). The workflow is as fol-
lows:

1. Module request comes in from integrator

M04BC005
206

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-M04BC0OS

config:
base: 7.0.7-NA/7.0.7-37d472c
require: 7.0.7-5.0.0/5.0.0-6a40805
metadata:
type: specification
version: 1
modules:
adandor:
versions:
- 7.0.7-5.0.0/2.
- 7.0.7-5.0.0/2.
adcore:
versions:
- 7.0.7-5.0
adsupport:
versions:
- 7.0.7-5.0.
asyn:
versions:
- 7.0.7-5.0.
autosave:
versions:
- 7.0.7-5.0
busy:
versions:
- 7.0.7-5.0.

8.0-6f3a1f4+1
8.0-6f3a1f4+2

.0/3.12.1+2-50b90f0

0/1.10.0+2-205ab18

0/4.43.0+3-871c171

.0/5.10.2+2-45dclde

0/1.7.3+2-1ea0f0a

Figure 4: Example specification file

2. e3 team ensures that the module is ready and appropri-
ate for release
3. Automatically build and run any available tests
4. If it passes, tag the wrapper and add it to the specifica-
tion
5. Automatically run the package manager to build and
deploy to the test environment
6. If that succeeds, deploy to production environment
An important part of the above is that the 3 team acts as
gatekeepers for ESS’ EPICS environment. While many mod-
ules can be released with little oversight (such as modules
developed by integrators to manage site-specific equipment),
for certain modules (in particular, asyn—see Fig. 6) we are
much more careful about release schedules in order to avoid
long-term maintenance issues. In general, any module that
is a dependency of many other modules is something that
we take much more care about its release schedule into our
environment.

Conda e3

During this time, we continued using the existing Conda
proof-of-concept for managing the control system for the
Neutron Instrumentation team. This allowed us to focus on
some of the necessary automation workflows and tools that
had not been ready when the proof-of-concept was originally
presented.

For example, in the original design a build of a support
module would trigger a rebuild of every single downstream
dependency. While this allows for a quick and simplified
workflow for module developers, it encourages and abets the
exact combinatorial explosion of dependencies that we had

Software

Software Best Practices

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

Build

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
d0i:10.18429/JACoW-ICALEPCS2023-M04BC0OS

Request

Update wrapper

GitLab CI

Build or N
test failure

/—>[Add to specification]

-

GitLab CI

Build in
test env

Tag release

Release to prod !

Figure 5: Module deployment workflow

ipmimanage
21041 Jo_
el

a
gammaspc |===/" = \~--—=----2
2.2.040 \as==
/= asynfile PPtse
7\, 0.0.4+0 T -

-

/
/
v
»| stream
A 28:24+1 R
»h\X Sy % .
smagnetps 1 /7
P o | I g L s
.2+ /\\ \ 1-="7 ; L '
> ol ! adaravis
* 22140 f=
ot ~,
k . £

o) .

‘\“ .9. =.3.0- 7
\\\‘ N, . it

A A
. N
adproslllcal adesimd N

2 @*‘l 5.06d7891e41

_./ y

™ . 218.0-6f3a1f4+2
‘ad5|mdelecto; _/

Figure 6: Module dependency graph

adandor3

been trying to avoid.

A lot of work has been put into improving procedures and
automation tools to allow for automation where appropriate,
but also for control at gatekeeping by a small dedicated team,
exactly as the original requirements stated.

Finally, the use of Conda as an EPICS build system over
the past several years has revealed that it is both capable and
mature enough to handle the commissioning needs of our
Neutron Instrumentation network. Our next aspiration is to
re-eveluate it as an EPICS build and deployment system over
the entirety of ESS’ control system.

CHALLENGES AND LESSONS LEARNED
Challenges

Overall challenges One challenge that facilities of any
moderate size face is keeping a good overview and control
of the list of support modules and their versions. This is in

Software

Software Best Practices

part to avoid the issue of systems that become so old that no
one knows how to update them, or wants to change them for
fear of breaking a system that ‘works’.

One partial solution to this problem is one of
standardisation—if you enforce that integrators are only able
to pull from a relatively limited collection of support mod-
ules, then you can better ensure that there will be fewer
conflicts as well as better ease of managing and updating
systems.

Upon starting to integrate the two systems (NFS and
Conda e3) into a common deployment system, we began
to address an issue related to standardisation that we knew
would arise: namely that the build and dynamic loading sys-
tems had diverged significantly, as well as the specific pool
of module versions. This was anticipated, but nonetheless
provided a challenge when we started to synchronise across
e3 versions.

Challenges specific to NFS e3 While developing the .

NFS-based solution the e3 team took a lot of inspiration from
the capabilities of Conda. Despite some identified potential
issues, we still saw a lot of value with that approach and
used that as inspiration for our development. Nevertheless,
there were quite a few specific issues that arose during this
time.

require llrfsystem, 3.18.0+0
epicsEnvSet ("LLRF_P", "RFQ-010")
epicsEnvSet ("IDX", "101")

epicsEnvSet ("LLRF_R",
etc., etc.
epicsEnvSet ("RKLY", "RFS-Kly-110:")
epicsEnvSet ("SEC", "rfq")
epicsEnvSet ("RFSTID", "0")

"RFS-LLRF-$(IDX)")

iocshLoad ("$(llrfsystem_DIR)/llrfsystem.iocsh")
Figure 7: Snippet of IOC startup script
* Non-EPICS related dependencies: At its heart, e3 and

MO04BC005
207

©22 (ontent from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

its related tools are a system for managing EPICS mod-
ules. If an IOC depends on a system package (either
at build-time or run-time) then there is no natural way
to track this within our deployment system. This leads
to dependencies that are tracked in multiple different
locations.

* Moreover, these build-time dependencies are globally
managed in the Docker image [7] that we use to per-
form the CI builds. The build dependencies themselves
are simply a list of every single dependency we have
at some point needed, with no particular structure or
ordering. While this has not yet provided any issues, it
is not hard to foresee that this is not a lasting solution.

» Separation of run-time and build-time dependencies:
Related to the above, we have no natural way of tracking
and managing which dependencies are build-time or
run-time ones. This applies to both EPICS and non-
epics dependencies.

* IOC dependencies are mixed with run-time configura-
tion: A typical startup script for an IOC contains (see
Fig. 7) both dependency descriptions as well as config-
uration. These are separate types of information that
ideally should be managed separately.

* Dependency resolution is extremely simplistic: Un-
like most package managers which allow a devel-
oper to specify a range of valid dependencies (e.g.
1.0.0 < v < 2), our dependencies must be specified
(nearly) exactly. This adds a lot of maintenance work
for module developers.

* NFS availability: Since IOCs need access to the shared
build server during startup, NFS availability can be
(and has been observed to be) a potential issue. By con-
trast, since Conda environments are deployed locally
to the IOC host, they do not require an external NFS
connection in order to run (although they might require
other services such as a nonvolatile share for autosave
data).

Challenges specific to Conda e3 As had been identified
during our early prototyping, Conda faces its own set of
technical challenges.

* Combinatorial explosion: If one naively builds all
downstream dependencies each time a module is built,
then one ends up with a situation that is maximally
flexible for integrators and developers, but which is
far worse from a maintainer’s perspective. Each IOC
update is potentially its own special case with its own
special list of issues to address instead of being a rela-
tively predictable update.

* Managing development vs. production environments:
The above can be handled by having a clear separation
between development and production environments.
Development environments and module pools can be
maximally flexible, while production ones can be more
restricted. Nevertheless, what is the best way to handle
this while using Conda?

Lessons Learned

Upsides Despite the challenges, there turned out to be
several advantages to having two parallel build and deploy-

MO04BC005
208

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-M04BC0OS

ment systems.

One advantage was the cross-polination of ideas from
one solution to the other. While we initially abandoned the
Conda proof-of-concept to further develop our NFS-based
solution, we realised that there was a lot of good functionality
that Conda provided that we could adapt into our production
system, even if it was architecturally quite different.

Another advantage was that we were able to continue at
ESS to explore and develop to proof-of-concept using Conda
as a mechanism for EPICS build and deployment. While
there were concerns raised initially, None of them turned out
to be true showstoppers. Moreover, while developing the
NFS-based solution we ran into many technical issues that
were difficult to resolve, but that Conda provided a natural
solution to.

Finally, on a personal level—which probably does not
scale much or translate to other facilities—we can say that
our development team learned a lot. The need to design our
own custom package manager and build and deployment
toolchains in a small team is not a small task, and one that
improved our understanding of EPICS, GNU Make, and
package management in general.

Downsides Not surprisingly, a major downside and chal-
lenge that we faced was keeping the two build and deploy-
ment systems in sync. There were several aspects to this:

» Coordination of module versions for production sys-
tems. One purpose of having a team responsible for the
EPICS distribution is to act as curators and gatekeepers.
Unfortunately, having two distinct teams and module
pools naturally led to divergent module versions which
required some codrdination to address.

* Divergent build systems. The Conda build system was
able to mostly directly use the original PSI require
without much change, which of course required a lot
less maintenance. In contrast, the NFS e3 build system
had been modified quite a lot. Synchronising these
proved to be quite a challenge.

Furthermore, there is a difficulty when pursuing two op-
posing goals at the same time: a lot of energy can be wasted
on indecision, with many discussions being revisited again
and again. Sometimes, like a sailor boarding a boat, you
simply need to confidently make the leap and stick with it.

Finally, while as stated above it was beneficial to explore
both solutions and to allow for cross-polination, actually
maintaining two build and deployment systems meant that
regardless of what the final production system looks like
we will have produced a lot of redundant code that will
ultimately be left unused.

CONCLUSION

Maintaining two separate build and deployment systems
is challenging and takes a lot of resources. In particular,
coordination between the two will become more work the
more established they become.

However, allowing space and resources to develop proof-
of-concepts can also be quite valuable. The danger can oth-
erwise be that one gets stuck in a ‘local minima’ of sorts, an

Software

Software Best Practices

19™ Int. Conf. Accel. Large Exp. Phys. Control Syst.
ISBN: 978-3-95450-238-7 ISSN: 2226-0358

established system that has issues that become more difficult
to resolve over time due to how entrenched they become.

When comparing the two specific solutions in question,
NFS-based and Conda based, they each have their own is-
sues.

For Conda, there remains an issue with managing the com-
binatorial explosion that can come from allowing arbitrary
package versions. We are currently working on developing
the correct workflow to act as gatekeepers for releasing to a
production channel that should help address this issue.

For the NFS-based solution using our custom environment
manager (e3-build), there still remains several difficult
issues—in particular, many of those that related to depen-
dency mangement beyond simple EPICS-based ones—that
are resolved relatively easily by Conda.

In some sense, the realisation that managing an EPICS
environment is a subproblem of managing package environ-
ments has led us to re-evaluate Conda as an EPICS package
manager.

While at the moment we still exist in a liminal state be-
tween EPICS environment solutions, we would like to move
towards a more standard and community-accepted environ-
ment and package manager. Sadly, there does not at the
moment exist such a tool used within the EPICS community.
Our hope is that further development of our Conda e3 solu-

Software

Software Best Practices

ICALEP(S2023, Cape Town, South Africa

JACoW Publishing
doi:10.18429/JACol-ICALEPCS2023-M04BC0OS

tion might be able to provide a solution that can be adopted
and developed more widely [8].

ACKNOWLEDGEMENTS

This work would not be possible without the work of
some giants before us, as well as all of the help that we have
received along the way. In no particular order we would like
to thank Benjamin Bertrand, Anders Harrison, Dirk Zimoch,
Jeong Han Lee, Timo Korhonen, and Wayne Lewis

REFERENCES

[1] EPICS, https://epics-controls.org/
[2]

(3]

e3 documentation, https://e3.pages.esss.lu.se

Require, https://github.com/
paulscherrerinstitute/require/

B. Bertrand and A. Harrisson, “Building and Packaging EPICS
Modules With Conda”, in Proc. ICALEPCS’19, New York,
NY, USA, 2020, pp. 223-227.
doi:10.18429/]JACoW-ICALEPCS2019-MOPHAO14

Conda, https://conda.io/

GitLab CI, https://docs.gitlab.com/ee/ci/
Docker, https://www.docker.com/

XKCD: Standards, https://xkcd.com/927/

(4]

(]
(6]
(7]
(8]

MO04BC005
209

&= Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

of
©

