
IMPROVING CONTROL SYSTEM SOFTWARE DEPLOYMENT AT MAX IV
B. Bertrand∗, Á. Freitas, A. F. Joubert, MAX IV, Lund, Sweden

J.T. Kowalczyk, S2Innovation, Kraków, Poland

Abstract
The control systems of large research facilities like syn-

chrotrons are composed of many different hardware and
software parts. Deploying and maintaining such systems
require proper workflows and tools. MAX IV has been us-
ing Ansible to manage and deploy its full control system,
both software and infrastructure, for many years with great
success. We detail further improvements: defining Tango
devices as configuration, and automated deployment of spe-
cific packages when tagging Gitlab repos. We have now
adopted conda as our primary packaging tool instead of the
Red Hat Package Manager (RPM). This allows us to keep
up with the rapidly changing Python ecosystem, while at
the same time decoupling Operating System upgrades from
the control system software. For better management, we
have developed a Prometheus-based tool that reports on the
installed versions of each package on each machine. This
paper will describe our workflow and discuss the benefits
and drawbacks of our approach.

INTRODUCTION
The MAX IV synchrotron radiation facility in Lund, Swe-

den started user operations in 2016. It consists of a short-
pulse facility and two storage rings with 16 beamlines. The
control system has more than 500 virtual and physical ma-
chines to configure and maintain, including 24k Tango de-
vices with 134k configurable properties. This requires au-
tomation, and the Software group has been using Ansible [1]
to manage and deploy the full control system, both soft-
ware and infrastructure, for 10 years [2]. We previously
described [3] how we started moving away from RPM pack-
ages, tightly coupled to the Operating System version, to
conda [4]. We now have deployments on many of our beam-
lines using solely conda. We discuss how the packages are
created, and the pros and cons of our approach. Next, we
describe how our Ansible deployment has changed to better
support our common workflows. Finally, we report on a new
monitoring tool we use to keep track of the actual state of
the deployed code, and why it might differ from the Ansible
configuration.

PACKAGE MANAGEMENT
Python

When investigating replacing RPM with conda, we started
by creating a conda recipe in the source repository using a
cookiecutter [5] template. Having to create a recipe in every
repository made the adoption and transition quite slow. We
developed a GitLab CI pipeline to automatically build conda

∗ benjamin.bertrand@maxiv.lu.se

packages using Grayskull [6]. Grayskull is an automatic
conda recipe generator. It could create recipes for Python
packages available on PyPI and from GitHub repositories.
We added support for local source distribution [7]. Figure 1
details how the GitLab job creates a sdist package to then
automatically generate the conda recipe.

Figure 1: auto-build-conda-package job.

If the recipe is not noarch, the job fails. For pure python
package, this could be due to defining a script instead of
an entry point, which should be fixed by the developer. For
packages requiring compilation, a recipe has to be created
manually. This is more for safety as grayskull is capable
of generating such recipes. As we only have very few such
repositories, this is not an issue. When an entry point is
detected, grayskull automatically adds a test by running it
with the --help flag. Unfortunately, applications based on
taurus [8] do not support this flag. We remove this test but it
would be better to keep it. The pipeline could be improved
to keep it if taurus is not in the dependencies. This new
pipeline allowed us to create conda packages very easily for
all our internal repositories and made the transition from
RPM to conda possible.

C++
We work mostly with Python but also have some C++

Tango device servers. Those had a dependency at build
time on Makefiles from Pogo [9], the Tango code generator.
To ease the compilation with conda, we migrated the build
system to CMake [10]. This was a manual process but was
not a huge task as we do not have that many C++ repositories
and the CMakeLists.txt to create is quite similar between
projects. Once a project can be compiled with CMake, and
without any Pogo dependency, creating the conda recipe is
quite straightforward and similar to how upstream projects
like TangoDatabase and TangoTest are built.

Benefits
Moving from RPM to conda allowed us to separate the

deployment from the operating system packaging and the
system Python version. We could migrate from CentOS 7 to
Rocky Linux 8 deploying exactly the same conda packages.
Without this change, we would have had to rebuild all our

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO04

Software

Software Best Practices

MO4BCO04

201

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



RPMs for Rocky. We are now far less dependent on the OS
and switching to a non-RPM based distribution is possible.
Another advantage is that we have more freedom regarding
all our dependencies and Python itself. We could move to
Python 3.9 with conda when still on CentOS 7 while we
were using 3.6 with RPM. We have been testing against 3.11
for some time in our CI pipelines and are in the process to
switch the default version. Yet another advantage, is that
developers can create conda environments on their develop-
ment machines (running Linux, macOS, or Windows) and
develop locally in an environment nearly identical to pro-
duction. This speeds up development. Before people used
docker containers, which was more cumbersome to setup
and didn’t really work for graphical applications.

For all modules available in a public repository, we try
to submit a recipe to conda-forge [11]. There is great in-
frastructure in place making it easy to keep packages up
to date. This benefits the whole community. For internal
repositories specific to MAX IV, or for packages that cannot
be redistributed due to the license (like Basler pylon Camera
SDK), we use our own conda server based on Quetz [12].

Constraints
One remaining annoying issue is our pipeline execution

time. Conda-build [13], or even conda mambabuild, when
using boa [14] is quite slow. Our auto-build-conda-package
CI job easily takes 5 minutes for a pure Python Tango Device
Server, while the build-pypi-package job takes 30 seconds.
To be fair, python -m build will happily create a package even
if some of the defined dependencies do not exist. Another
job is needed to check if the package can be installed and
to test it. Conda-build will both create the package and run
some tests after installing it in a new clean environment.
So two jobs in one. But the slow part is not the testing
one, it is the parsing of the recipe. The conda-build format
has become quite complex over the years, requiring some
recursive parsing and solving. The community is aware of
the problem and some discussions are on-going to introduce
a new format [15]. There is even a tool for this proposed
format: rattler-build [16]. It is written in Rust, does not have
any dependencies on conda-build or Python, and works as a
standalone binary. First tests are quite impressive. Building
a package with rattler-build took only 23 seconds running
locally, while conda mambabuild took 3 minutes and 18
seconds. This includes the package creation, installation
and testing in both cases. For simple recipes, using boa
convert works well to create the required recipe from the file
generated by grayskull. The tool is still in early development,
so we will continue to do more testing. For our use case, it
looks very promising.

It is worth mentioning wheel2conda [17], an experimental
tool to convert pure Python wheels to conda packages. The
idea was interesting but the project was abandoned in 2018
and needed development. We opted to stay with the officially
supported tools. Since then, a new tool based on the same
concept was created: python-wheel-to-conda-package [18].
We have not tested it yet. It may merit investigation as such

a tool would be very fast but would require an extra step to
test the resulting package.

DEPLOYMENT
Generic Conda Environment

Two years ago, we detailed how we can create conda en-
vironments using the conda_envs variable in our inventory.
The Ansible role was improved. It is now possible to define
desktop menus for each environment. The creation of the
environment was also optimized by using the conda module
instead of conda_env if only conda packages are used (i.e.
not pip dependencies), skipping the creation of an environ-
ment.yml file.

Tango Device Servers
Sardana used to be deployed using a specific role. We cre-

ated a generic one to deploy Tango device servers and could
replace the sardana role. The ans_maxiv_role_tango_ds role
uses the tango_ds variable to define a list of Tango device
servers. It relies on three different custom Ansible modules.

• The tango_config module registers and configures
tango devices.

• The conda module deploys tango servers via conda.

• The tango_starter module ensures that the device
servers are started or restarted (in case of change).

This role gives us an elegant way to define the Tango
Device Servers to deploy using a nested list of servers, in-
stances and devices, including the packages to install, as
seen in Fig. 2a. The role ensures that an instance is restarted
if the version changes. As we use mostly Python, the role
will automatically add the default Python, cppTango and
PyTango versions from the inventory in the environment of
each server. This helps to keep the same version deployed ev-
erywhere. It is possible to specify a different version to test
only in one environment before deploying globally (Fig. 2b).

(a) Standard definition. (b) Overwrite default versions.

Figure 2: Tango Device Servers definition

Continuous Deployment
The Ansible inventory defines the location where each

package should be deployed, as well as the version to be

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO04

MO4BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

202

Software

Software Best Practices



used. The default version for each package is kept in a
versions dictionary in the Ansible all group. When tagging a
repository, a GitLab CI job will automatically create a merge
request in the inventory to update the default version of that
package (Fig 3). The developer who tagged is assigned to
that merge request. He can merge it himself or approve it
and set a milestone so it is merged and deployed later.

Figure 3: Automatic inventory update.

It’s even possible to setup continuous deployment by set-
ting extra variables in the .gitlab-ci.yml file to specify the
conda environment and hosts to update (Fig 4).

Figure 4: GitLab CI file for continuous deployment.

In that case, the inventory update MR is merged auto-
matically and an extra CI job is run to trigger the Ansible
deployment by using AWX [19] API as shown in Fig 5.

Figure 5: Continuous deployment pipeline.

This is very useful for applications maintained by the
beamline staff themselves, like the synoptic for example. It
gives them the possibility to deploy their software using our
Ansible workflow, just by tagging their repository.

Monday Deployment
The continuous deployment can’t be generalized to most

applications as we don’t want to change software during
operations. It is thus crucial to deploy regularly to ensure
that the Ansible inventory matches what is really installed
on all machines. A deployment crew is in charge to merge
approved merge requests with the proper milestone and run
the Ansible deploy playbook on all beamlines every Monday
(a maintenance day). This is to avoid any divergence and to
make sure a bug fix is deployed everywhere. This process
also helped us to keep the inventory clean and gave us better
confidence in the deployment system, avoiding developers
being afraid of breaking something by running Ansible.

MONITORING
The Ansible inventory is very valuable but does not give

us the full picture. Some software could have been installed
manually, or using Ansible but removed from the inventory
and still be present on a machine.

Prometheus
To keep better track of what is deployed at any time, we

developed a script to collect packages data from yum and
conda. We use Prometheus [20] to monitor Linux hosts via
the standard node_exporter and even have a tango_exporter
to gather Tango specific information. The packages_export
script is run by the crontab every 30 minutes and creates
a packages.prom file inside the directory monitored by the
node_exporter textfile collector. Figure 6 shows the infor-
mation saved for both a conda package and RPM.

Figure 6: packages.prom file.

We store data for all RPMs coming from our internal
repository and for all conda packages installed in a global
environment by Ansible. Figures 7 and 8 show how we
can search for any package (conda or RPM) via a grafana
dashboard.

Figure 7: Conda package dashboard.

Figure 8: RPM package dashboard.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO04

Software

Software Best Practices

MO4BCO04

203

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Sorting per version is very useful to find if a package is
outdated on some hosts. It is also possible to see if a package
was locally modified. For debugging, the recommended way
is to create a new environment and install the package in
editable mode. But avoiding developers modifying code
directly in an installed package for quick tests has proven
difficult. At least, we now have a way to detect it. We have
been thinking about sending notifications about altered pack-
ages. This check was implemented by comparing expected
and computed sha256 checksums on files. Note that, since
conda 23.7.0, the conda doctor command implements this
health check.

Nox
When working on a repository, knowing where and which

version of a package is deployed is quite useful. The infor-
mation can be found in the Ansible inventory or using the
previously grafana dashboard, but requires context switching.
We developed a small web application, named Nox to create
widgets that can be integrated in a repository README file.
Nox uses the Prometheus information stored in a Victoria-
Metrics database. Figure 9 shows how to add a widget to a
README in markdown with just one line using the img tag.
Only the package name needs to be passed to the url. This
is rendered as in Fig. 10.

Figure 9: Nox widget definition.

Figure 10: Nox widget rendered.

We added this line to most repositories README in our
GitLab instance, making this dynamic information easily
available. This is now part of our cookiecutter template
when creating a new project.

CONCLUSION
We managed to automatically create conda packages in

our GitLab CI pipeline, without having to write a recipe, and
are confident we can improve its speed in the near future.
Conda allows us to deploy C++ and Python software without
being tied to the Operating System, which helps production

deployment as well as developers working on their local ma-
chines. Contributing to the public conda-forge channel has
benefited the Tango Controls and scientific software com-
munity. In the last two years, we also improved our Ansible
workflow with an easier way to define Tango Device Servers
in our inventory. This ensures the necessary applications,
and only those, are automatically restarted during deploy-
ment. We adopted a regular deployment process to improve
our confidence in the state of the deployed software, and our
ability to deploy to clean machines. On the monitoring side,
we developed tooling to provide us with an accurate picture
of what is deployed where. By integrating it with the source
repositories, developers can see at a glance which beamlines
are using a package and may be affected by planned changes.
Ansible has served us well — we expect this to continue,
and that our processes will continue to improve.

REFERENCES
[1] Ansible documentation, https://docs.ansible.com
[2] V. H. Hardion et al., “Configuration Management of the Con-

trol System”, in Proc. ICALEPCS’13, San Francisco, CA,
USA, Oct. 2013, paper THPPC013, pp. 1114–1117.

[3] B. Bertrand, Á. Freitas, and V. Hardion, “Control Sys-
tem Management and Deployment at MAX IV”, in Proc.
ICALEPCS’21, Shanghai, China, Oct. 2021, pp. 819–823.
doi:10.18429/JACoW-ICALEPCS2021-THBL01

[4] Conda documentation, https://docs.conda.io
[5] Cookiecutter, https://cookiecutter.readthedocs.io
[6] Grayskull, https://github.com/conda/grayskull
[7] Grayskull PR 282, https://github.com/conda/
grayskull/pull/282

[8] Taurus Project, https://taurus-scada.org
[9] Pogo, https://gitlab.com/tango-controls/pogo

[10] CMake, https://cmake.org
[11] Conda-Forge Community, “The conda-forge Project:

Community-based Software Distribution Built on the
conda Package Format and Ecosystem”, Zenodo, 2015.
doi:10.5281/zenodo.4774216

[12] Quetz, https://quetz.readthedocs.io
[13] Conda-build, https://docs.conda.io/projects/

conda-build

[14] Boa, https://boa-build.readthedocs.io
[15] A new YAML based format for “conda-build” files, https:

//github.com/conda-incubator/ceps/pull/54

[16] rattler-build, https://github.com/prefix-
dev/rattler-build

[17] wheel2conda, https://github.com/takluyver/
wheel2conda

[18] python-wheel-to-conda-package, https://github.com/
tibdex/python-wheel-to-conda-package

[19] Ansible AWX, https://github.com/ansible/awx
[20] Prometheus, https://prometheus.io

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO04

MO4BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

204

Software

Software Best Practices


