
PROTECTING YOUR CONTROLS INFRASTRUCTURE SUPPLY CHAIN
B. Copy ∗, J.B. de Martel, F. Ehm, P. Elson, S. Page † , M. Pratoussy, L. Van Mol

CERN Beams Department, 1211 Geneva, Switzerland

Abstract
Supply chain attacks have been constantly increasing since

being first documented in 2013. Profitable and relatively
simple to put in place for a potential attacker, they com-
promise organizations at the core of their operation. The
number of high profile supply chain attacks has more than
quadrupled in the last four years and the trend is expected to
continue unless countermeasures are widely adopted.

In the context of open science, the overwhelming reliance
of scientific software development on open-source code, as
well as the multiplicity of software technologies employed
in large scale deployments make it increasingly difficult
for asset owners to assess vulnerabilities threatening their
activities.

Recently introduced regulations by both the US govern-
ment (White House executive order EO14028) and the EU
commission (E.U. Cyber Resilience Act) mandate that both
Service and Equipment suppliers of government contracts
provide Software Bills of Materials (SBOM) of their com-
mercial products in a standard and open data format. Such
SBOM documents can then be used to automate the discov-
ery, and assess the impact of, known or future vulnerabilities
and how to best mitigate them.

This paper will explain how CERN investigated the im-
plementation of SBOM management in the context of its
accelerator controls infrastructure, which solutions are avail-
able on the market today, and how they can be used to grad-
ually enforce secure dependency lifecycle policies for the
developer community.

INTRODUCTION
Supply chain attacks involve a malicious third-party in-

filtrating an organization by exploiting vulnerabilities in
third-party components or software used in critical systems.
These attacks brought in the context of accelerator controls
can compromise the integrity and reliability of operations,
potentially leading to disruptions, data breaches, and unau-
thorized control over essential infrastructure.

The first documented software supply chain attack in June
2013 caused a distributed denial of service on the South
Korean government and several news outlets [1] by leverag-
ing the legitimate auto-update mechanism of the SimDisk
file-sharing and storage service. When organizations rely on
third-party suppliers for components, software, or services,
they trust that these suppliers have adequate security mea-
sures in place. Suppliers with inadequate practices become
vulnerable points of entry for attackers.

In the context of open science and its major reliance on

∗ brice.copy@cern.ch
† stephen.page@cern.ch

open-source software, open-source software maintainers re-
place commercial suppliers as essential pieces in securing
the supply chain. While commercial suppliers are akin to reg-
ulated factories producing reliable components, open-source
maintainers act as skilled artisans crafting components col-
laboratively. Their level of dedication and engagement is
not dictated by commercial agreements and can vary over
time, yet open source software constitutes the cornerstone
of CERN accelerator operations.

Furthermore, this reliance on open-source software is
globally following an accelerating trend, without signs of sta-
bilising. The 2023 Open Source Security and Risk Analysis
(OSSRA) on open source trends [2] reports that in 2022, the
average software project depends on 595 third-party open-
source libraries (a near 200% increase over the last four
years), while 48% of the analyzed projects contained high-
risk vulnerabilities such as documented proof-of-concept,
active exploits or remote code execution opportunities (a
minor decrease of 2% since 2021). The OSSRA 2023 report
also shows that :

• Organizations are insufficiently fixing high-risk vulner-
abilities, with a global 42% increase of their presence in
codebases since 2018. Some industries more lucrative
to attackers, such as e-commerce, are even reporting a
557% increase over the last five years.

• Open source maintenance is on the decline, with an
increasing usage of open-source components that have
been without activity over the past 24 months, from
85% in 2018 to 90% in 2022. Reasons most cited by
open source maintainers are a lack of recognition and
inadequate compensation.

In addition to the inexorable discovery and exploitation
of software defects leading to vulnerabilities, open source
software is subject to neglect with dreadful consequences.
Lack of open source software maintenance opens the door
to abuse such as the introduction of malware, protestware
(software that contains some kind of political protest in ad-
dition to its primary function), typo-squatting (software that
relies on common typographic or spelling errors to spread)
and dependency confusion (when a malicious dependency
library is downloaded from a public registry rather than the
intended private/internal registry, for instance by exhibiting
a higher version number).

Without appropriate countermeasures, such abuse is :

• Hard to detect and report upon, as both a suitable de-
pendency taxonomy and communication channels need
to be established.

• Difficult to track and to mitigate without the usage of
an inventory and automation.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO03

MO4BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

196

Software

Software Best Practices



• Taken less seriously by the owners of isolated controlled
infrastructure, as their cultural take on software vulner-
abilities does not account for its destructive intra-muros
capabilities.

Standards and measures that have proven effective in the
industry to address supply chain concerns will be described
in the following sections, including how they can be applied
in a research-focused, accelerator controls context, such as
CERN.

SOFTWARE BILL OF MATERIALS
Nowadays, using dependency management as part of a

build system is an integral part of software development.
This automates the retrieval and integration of external li-
braries, ensuring consistent and up-to-date dependencies. In
turn, this greatly simplifies the tracking of software compo-
nents and therefore, also facilitates the means to patch and
upgrade their application.

Nevertheless, build systems are programming language
dependent and are therefore sub-optimal when applied to
a language which they were not designed for, resulting in
inefficient management of that language’s third-party de-
pendencies. However, modern software systems routinely
combine multiple technologies to accomplish their objec-
tives e.g. Java for enterprise back-end systems, Python for
data science, Typescript for web-based user interfaces, etc.

A Software Bill Of Material (SBOM) is a machine-
readable document that provides a unified, platform-agnostic
view of software dependencies. SBOM descriptors bring
the following advantages [3, Chapter 4] :

• Comprehensive Visibility: SBOMs provide a holis-
tic view of all software components and dependencies
across different platforms and technologies. This com-
prehensive visibility is crucial for identifying vulnera-
bilities that might exist in various parts of the system.

• Risk Mitigation: By proactively identifying and ad-
dressing vulnerabilities across the entire software stack,
the risk of security breaches, data leaks, and opera-
tional disruptions can be significantly reduced. Identi-
fying and addressing the vulnerabilities in a platform-
agnostic manner can reduce the attack surface of the
overall system, making it harder for attackers to find
and exploit weaknesses.

• Efficient Patch Management: An SBOM helps to effi-
ciently track and manage patches or updates for vulner-
able components. Remediation of vulnerabilities can
be prioritized based on their criticality, regardless of
the platform, reducing the risk of exploitation.

• Future-Proofing: As technology evolves, organizations
often adopt new platforms or languages. A technology
agnostic SBOM is adaptable and future-proof, thus it
can help ensure that security practices are scaled and
adapted to technological changes.

• Compliance and Reporting: Many regulatory frame-
works and security standards require organizations to
maintain a comprehensive inventory of software compo-
nents and their security status. A technology agnostic
SBOM simplifies compliance efforts by providing a
centralized source of truth.

Having an accurate SBOM facilitates the discover of exist-
ing vulnerabilities within a software system. In turn, it can
then be used to cross-check the existing production software
system against constantly emerging vulnerabilities. While
Zero-day vulnerabilities certainly grab headlines, the so-
called N-days vulnerabilities are much more prevalent and
tend to linger for much longer, just as the active interest in
seeing them eliminated tends to wane with time. This is all
the more concerning in accelerator controls facilities. [4]

The potential impact of these improvements has led to mul-
tiple national and transnational government bodies to adopt it
in their legislations. In May 2021, the US government issued
Executive Order 14028, “Improving the Nation’s Cyberse-
curity”, mandating the publication and usage of SBOMs
amongst federal agencies, federal contractors and critical
infrastructure. In September 2022, the European Union has
in-turn, adopted the Cyber Resilience act that makes SBOM
an integral part of the CE product certification process [5].

A Bill Of Material (BOM) is not a new concept : it is
already used in a variety of industries, such as manufac-
turing. Software never operates in isolation, it relies on
underlying hardware, a supporting regulatory framework
(e.g. service level agreements, value chain portfolios, chains
of trust etc.), as well as third-party services. All these con-
cepts and more, can also be captured as part of a larger bill of
material. Certain BOM standards, such as CycloneDX [6],
provision specifically for such wider contexts to support a
complete secure life cycle.

In the context of the CERN accelerator controls software,
since 2022, a small portfolio of significant applications has
been selected for analysis, to evaluate the steps required for
SBOM generation and in-turn, assess the usefulness of the
resulting risk assessment.

ANALYSIS OF SAMPLE CERN
ACCELERATOR CONTROLS SOFTWARE
Software Project Portfolio

In order to determine the feasibility of consistently pro-
ducing SBOMs and how much insight their analysis would
bring to accelerator operation, a broad selection of applica-
tions have been enhanced with the necessary build steps to
produce and upload SBOMs to a Dependency Track [7]
instance. Dependency Track is an open-source analysis
platform that allows organizations to identify and reduce
risks in the software supply chain. It ingests SBOM docu-
ments and continuously monitors their contents for known
and emerging vulnerabilities, integrating with both public
and private vulnerability databases.

The portfolio of CERN accelerator controls software

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO03

Software

Software Best Practices

MO4BCO03

197

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



projects selected for review and analysis in Dependency
Track included :

• Project A : a modular Java framework for monitoring
large-scale infrastructure.

• Project B : A messaging and alarm propagation service
for the CERN accelerator complex.

• Project C : A list of recommended Java software li-
braries that developers are advised to integrate in their
systems, to ensure maximum software compatibility
for the duration of a given LHC run.

• Project D : A service to manage operational settings
for the CERN accelerator complex.

• Project E : A Python-based machine learning infras-
tructure, allowing the deployment of custom payloads
(TensorFlow, PyTorch, etc...).

• Project F : A Docker container base image, recom-
mended for CERN accelerator control applications,
based on CentOS Stream 8. It is part of pilot port-
folio as a baseline for container scanning, which is not
used in operation to date.

Key Metrics
Several metrics are available as part of the Dependency

Track reports, however for the purposes of this paper, two
key metrics have been selected for consideration :

1. Percentage of vulnerable components : how many com-
ponents (i.e. software libraries the application depends
on) are subject to known vulnerabilities. This includes
trivial and non exploitable vulnerabilities. This metric
illustrates the fact that certain key components tend to
be difficult to implement with unequivocal correctness
and therefore attract the attention of malicious actors
and security researchers.

2. Maximum Common Vulnerability Score (CVSS) : the
Common Vulnerability Scoring System (CVSS) repre-
sents in absolute terms, how easily a given vulnerability
can be exploited. It is expressed on scale of 0 to 10,
with 10 representing a target system that can be totally
compromised (i.e. grant the attacker full control) with
no other pre-requisite than being able to communicate
with the system in question (i.e. opening a network
socket on the advertised service port).

A summary of the range of results from the vulnerability
scanning is shown in Table 1.

Table 1: Summary of Portfolio Risk Indicators

Vulnerable Components Max CVSS

1% to 22% 5.5 to 10

Interpretation and Mitigations
As illustrated in Table 1, some of the selected projects

exhibit significant and immediate risk, the only mitigating
factor being that they are being operated on a segregated
operational network. Access control, and cybersecurity in
general, on the CERN operational network is considered
as a safeguard against operational mistakes rather than a
protection against malicious intent.

The most critical vulnerabilities in this selected portfolio
come from components that :

• could be upgraded to a later, safer version in every
single case; whether the upgrade is technically feasible
or not requires significant expertise and in some cases
may not be possible during operational running periods
of the accelerator complex.

• exhibit security-related functionality, typically using
security frameworks that handle authentication and au-
thorization filters (e.g. Spring security).

• exhibit low-level data functions, such as serialization
libraries (e.g. Snakeyaml, Xstream) or logging (e.g.
log4j).

• require active involvement from a malicious party
(which in the context of CERN reduces significantly
the overall risk).

A specific note, which will be referred to later, should
be made of the scanning of the Project F container image,
which revealed a surprisingly low number of known vulner-
abilities, considering the relative obsolescence of the given
operating system version. Upon manual inspection, the im-
age did carry critically vulnerable libraries (e.g. openssl
v1.1.1) that were not correctly identified and reported upon.
Using another scanning tool (Syft [8]) revealed a much larger
number of vulnerabilities, but unfortunately did not report
the one identified by Trivy [9].

With dependency inventories and metrics readily avail-
able, consideration now needs to be given to how to act
efficiently upon identified risks and how to instill account-
ability across the board.

SHIFT LEFT CULTURE
In an agile environment such as CERN, developers aim

to be empowered and are expected to take an active role
not only in the development and deployment of releases,
but in ensuring the security of the software they develop.
Infrastructure administrators are no longer necessary, nor
mandated to take part in deployments. This reflects the guid-
ing DevOps principles of automation, collaboration, and
shared ownership, ultimately leading to more secure and
resilient software products. This redistribution of responsi-
bilities is referred to as shift left culture [10, Section 1.4]
and permeates through all levels of the software development
life cycle:

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO03

MO4BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

198

Software

Software Best Practices



• Continuous Integration and Continuous Delivery
(CI/CD) : In DevOps, the goal is to automate and accel-
erate the software development and delivery pipeline.
”Shift left” concepts align perfectly with this by inte-
grating security into the CI/CD process, ensuring that
security checks are performed automatically as code is
developed, tested, and deployed.

• Collaboration : DevOps promotes collaboration be-
tween development, operations, and security teams.
”Shift left” encourages early and continuous collabora-
tion by involving security experts in the development
process, fostering a culture of shared responsibility for
security.

• Agile iterative development : In methodologies em-
ployed at CERN, such as Scrum and Kanban, software
is developed and updated at a rapid pace. A ”Shift left”
approach helps identify and remediate security issues
early, allowing teams to iterate quickly without compro-
mising security. Integration with code review facilities
employed at CERN, such as Gitlab merge requests, is a
means to ensure that vulnerability scanning becomes
an integral part of validating new code contributions
and curtail the deployment of known vulnerabilities.

• Auditing and Compliance : Shift left practices gen-
erate audit trails and records that can be valuable for
compliance and regulatory purposes, ensuring that se-
curity is not an afterthought when it comes to meeting
industry standards and requirements.

• Cost-Efficiency : By catching security issues early
in the development and deployment process, ”Shift
left” helps reduce the cost of fixing vulnerabilities and
security-related problems at later stages, which can be
significantly more expensive.

Adopting Shift left culture in combination with SBOM
not only enhances security but also contributes to the overall
agility, efficiency, and quality of software development and
infrastructure management processes. There are however,
numerous obstacles to attaining these goals in academic
research environments, such as CERN.

STEPS TO ADOPTION
Initial investigation into vulnerability scanning and

SBOM usage at CERN indicate clear benefits towards better
risk awareness, accountability and transparency. Neverthe-
less, a number of factors still need to be addressed for this
practice to become wide-spread.

Inventory and Ownership
Clear ownership is a foundational element of effective

software security. It establishes accountability, responsi-
bility, and visibility, enabling organizations to proactively
manage security risks, respond to incidents, and maintain a
strong security posture throughout the software development

life cycle. While service ownership at CERN is most often
clearly specified at a management level, this notion becomes
quickly diluted when working down to an individual soft-
ware component, without a formal centralized definition of
how the component contributes to which service as a whole.
This lack of fine-grained information results in a poor vis-
ibility and accountability for component owners, which in
turn deprives the organization of compliance enforcement
and resource-aware risk management. An SBOM standard
such as CycloneDX does provision for such information, but
it comes in orthogonally with respect to wider enterprise
management frameworks (e.g. ITIL, TOGAF) without clear
integration to date.

Standards Compliance And BOM Accuracy
At the time of writing, three major SBOM standards are

competing for widespread adoption : CycloneDX, SPDX
and SWID. Certain tools support only a given standard and
rely on third-party conversion mechanisms. SBOM genera-
tion for a single software product by different tools can also
result in completely different component lists, with missing
elements. SBOM documents produced by two different con-
tainer image scanning tools (Trivy [9] and Syft [8]) after
scanning the very same container image can differ signif-
icantly. The resulting vulnerability reports are therefore
different, with some parts even featuring contradicting or
non-standard information. As illustrated in the case of the
container image Project F in subsection ”Interpretation and
mitigations”, identifying components accurately when their
fingerprint, name and expected locations can be particu-
larly difficult, and may require employing a series of heuris-
tics [11]. This further stresses the need to adopt ”Shift left”
strategies, as the original software authors and maintainers
are best placed to produce accurate SBOM documents and
act upon resulting vulnerability reports.

Tooling and Integration
While SBOM standards are maturing, they remain rela-

tively new and lack the appropriate tooling support if they
are to thrive in large scale research environments.

Reporting SBOM can reveal a plethora of risk metrics,
but unfortunately suffer from a lack of adequate reporting
models and tools. Existing SBOM management platforms
such as Dependency Track [7] are both opinionated and
deficient, as they do not support multi-dimensional data ag-
gregation, complex filtering or simply perform data exports,
that in turn, could be exploited in rich reporting platforms
(e.g. Tableau, BusinessObjects). This limits compliance
reporting and vulnerability auditing, and therefore fails to
exploit the possibilities offered by the CycloneDX standard,
for instance.

Scalability Sensitive information management requires
the highest level of granularity when it comes to access-
ing, asserting provenance, and following up existing and
emerging risks. When compared to other cybersecurity risk

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO03

Software

Software Best Practices

MO4BCO03

199

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



management solutions, SBOM solutions like Dependency
Track [7] or Quay [12] are still recent and do not provide
scalable access rights management, nor support information
partitioning and role-based access according to an organiza-
tion’s existing legal and functional hierarchies. In contrast,
established software repository solutions such as Artifactory
are much more advanced, but unfortunately lack the support
for SBOM management and vulnerability auditing.

Suitable Information Channels Once ownership and
reporting of cyber risks are in place, the continued life cycle
and evolving impact of a vulnerability must be audited. Plat-
forms such as Dependency Track provide rudimentary and
inflexible support, without any means to integrate custom
business process logic. Most organizations already have
risk management procedures, escalation processes and dis-
semination workflows, yet Dependency Track ignores them
entirely, and leaves it up to the implementer to integrate
them through its REST API or industry standard solutions
(i.e. webhooks, JIRA issue tracking etc.).

CONCLUSION
This paper summarizes the work done at CERN to gain

practical experience in better protecting accelerator controls
software against supply chain vulnerabilities. The conducted
investigations revealed the immediate benefits of using Soft-
ware Bills of Materials and integrating a full vulnerability
auditing cycle in the development process. At the same time,
this paper described the shortcomings identified with the
current state of the art. Looking ahead, these shortcomings
must be addressed if such practices are to find their rightful
place amongst other tools in the cybersecurity risk mitigation

arsenal.

REFERENCES
[1] Trend Micro Investigates June 25 Cyber Attacks in

South Korea, https://www.trendmicro.com/vinfo/
us/threat-encyclopedia/web-attack/

[2] Open Source Security and Risk Analysis Report
2023, https://www.synopsys.com/software-
integrity/engage/ossra/rep-ossra-2023-pdf

[3] C. Hughes et al., Software Transparency. NJ, USA: Wiley,
2023.

[4] The Overlooked Problem of N-days Vulnerabilities,
https://www.darkreading.com/vulnerabilities-
threats/the-overlooked-problem-of-n-day-
vulnerabilities

[5] Cyber Resilience Act, https://digital-strategy.ec.
europa.eu/en/library/cyber-resilience-act

[6] CycloneDX Specification, https://cyclonedx.org/
specification/overview/

[7] Dependency Track Project, https://owasp.org/www-
project-dependency-track/

[8] Syft and Grype, Developer-friendly Scanning Tools For
Container Image Security, https://anchore.com/
opensource/

[9] Trivy The All-In-One Open Source Security Scanner, https:
//trivy.dev/

[10] D. Fisher, Application Security Program Handbook. NY state,
USA: Manning Publications, 2023.

[11] How NetRise Uses Knowledge Graphs to Identify Compo-
nents in SBOMs, https://www.netrise.io/

[12] Quay, a Scalable Open Source Platform to Host Container
Images, https://www.projectquay.io/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO03

MO4BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

200

Software

Software Best Practices


