
LESSONS FROM USING PYTHON GraphQL LIBRARIES TO DEVELOP
AN EPICS PV SERVER FOR WEB UIs

Rebecca Auger-Williams∗, Observatory Sciences Ltd, St Ives, UK
Abigail Alexander, Tom Cobb, Martin Gaughran, Austen Rose, Alexander Wells, Andrew Wilson

Diamond Light Source, Harwell, UK

Abstract
Diamond Light Source is currently developing a web-

based EPICS control system User Interface (UI). This will
replace the use of EDM and the Eclipse-based CS-Studio
at Diamond, and it will integrate with future Acquisition
and Analysis software. For interoperability, it will use the
Phoebus BOB file format. The architecture consists of a
back-end application using EPICS Python libraries to obtain
PV data and the query language GraphQL to serve these
data to a React-based front end. A prototype was made
in 2021, and we are now doing further development from
the prototype to meet the first use cases. Our current work
focuses on the back-end application, Coniql, and for the
query interface we have selected the Strawberry GraphQL
implementation from the many GraphQL libraries available.
We discuss the reasons for this decision, highlight the issues
that arose with GraphQL, and outline our solutions. We
also demonstrate how well these libraries perform within
the context of the EPICS web UI requirements using a set
of performance metrics. Finally, we provide a summary of
our development plans.

INTRODUCTION
Diamond Light Source is about to undergo a significant

upgrade as part of its Diamond II project, including new
beamlines and other accelerator upgrades. Improvements
to existing technologies are also being considered as part of
this initiative, which stimulated an assessment of the control
system UIs currently being used at Diamond. These are
predominantly EDM [1] and CS-Studio (Eclipse) [2], the
latter of which is now deprecated and has been replaced by
Phoebus [2]. Two alternatives are being considered, either
Phoebus or a web-based UI, both of which would require a
significant amount of effort to move to. A web browser UI
has many advantages—there is no installation required, it is
truly cross-platform, and it offers the best experience for re-
mote usage—and Diamond therefore developed a prototype
version of a web-based UI. This front-end application is built
with React [3], one of the most popular JavaScript libraries
for building web applications due to its use of components
that make it fast, scalable, and simple to use. Redux [4]
is used for the data management, which helps maintain a
global state across the application. The application itself is
written in TypeScript.

A back-end Python application has also been created,
named Coniql [5], which uses EPICS [6] Python libraries to

∗ rjw@observatorysciences.co.uk

Figure 1: A schematic showing how the front-end web UI
receives PV data from EPICS. The web UI uses a WebSocket
to connect to Coniql. It uses the GraphQL query language to
send requests for data following a defined GraphQL schema.
Coniql uses the Python aioca library to subscribe to updates
from the requested EPICS PV and returns these to the web
UI in a GraphQL query response.

access process variable (PV) data and a GraphQL [7] Python
library to serve these data to the web UI via WebSockets [8].
A schematic of the application front-end and back-end is
shown in Fig. 1.

TECHNOLOGIES
This section outlines the technologies that Coniql uses to

provide the back-end functionality. Figure 2 shows a diagram
of how these fit together in order to supply the front-end web
UI with EPICS PV data.

EPICS Python Library
The Python library aioca [9] is used as the EPICS channel

access (CA) client to provide access to EPICS PVs running
on IOCs. This application is built on top of asyncio [10]
to allow asynchronous querying. The API supports three
main function calls: caget, caput, and camonitor. These
resemble the EPICS CA command line tools.

GraphQL
GraphQL is an open-source querying language and run-

time engine that was originally developed by Facebook. It
can be used to create fast and stable applications where the
client can request only the data needed, with the results re-
turned in a predictable format. This reduces the amount of
data sent over the network and hence improves performance.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO02

Software

Software Best Practices

MO4BCO02

191

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



It supports reading, writing, and subscribing to data changes
through queries, mutations, and subscriptions via WebSock-
ets. The original GraphQL JavaScript implementation has
been ported to Python3 in the graphQL-core [11] library,
used by many higher-level libraries.

An example GraphQL subscription is shown in Fig. 3.

Strawberry GraphQL API
Of the many high-level Python GraphQL libraries avail-

able, we selected Strawberry [12] to build our back-end
GraphQL server. Strawberry supports a code-first schema,
where a schema is generated from a selection of resolver
functions and types defined in code. This is in contrast to
the schema-first approach where a schema is first defined
and then resolver functions are added. The benefit of the
code-first approach is that it makes the API much easier to
maintain as changes can be incorporated directly into the
code and the schema is dynamically created instead of hav-
ing to maintain compatibility between the two. Strawberry
also supports two WebSocket protocols, graphql-ws [13]
and graphql-transport-ws [14], the former of which has
now been deprecated. This was an important consideration
when choosing a library to build the Coniql application on
as we have now moved the web UI to use the new WebSocket
protocol. Strawberry also supports both asynchronous and
non-asynchronous resolvers, allowing flexibility throughout
the code and making the integration with the aioca API,
which uses async IO, straightforward. Strawberry has been
inspired by dataclasses and uses type hints and Python dec-
orators to offer a cleaner experience for developers.

The Strawberry API [15] is open source and uses
GitHub [16] for version control. It is actively maintained
with constant development and fast response times to issues
and GitHub pull requests (PRs). It is a community-driven
project that welcomes contributions and involvement. This
is important, given that Strawberry is still in its development

Figure 2: A diagram showing how the GraphQL func-
tions relate to EPICS PV calls. Top shows the calls for
a getChannel GraphQL query, which aims to get infor-
mation back about a PV. Coniql calls the caget function
in aioca, which uses the C libca library under the hood to
get the EPICS PV data through CA. A similar process is
used for putChannel and subscribeChannel GraphQL
queries, shown middle and bottom, respectively.

Figure 3: A GraphQL subscription request sent by the
web UI to Coniql. This example requests two fields: the
time of the last PV update, formatted as a human readable
datetime, and the value of that PV, formatted as a float.
The Coniql GraphQL schema supports further fields, such as
the status of the PV and display units. The client can define
which fields to include in the query.

phase, as it ensures that we have support for any issues un-
covered while developing Coniql. Strawberry also benefits
from detailed documentation.

ISSUES AND SOLUTIONS
We began development of Coniql using a GraphQL library

called Tartiflette [17], which is a schema-first GraphQL im-
plementation built on top of Python asyncio. While running
tests with our prototype web UI we came across a few is-
sues with this library, including a suspected memory leak.
In addition, we wanted to upgrade to use the latest Web-
Socket protocol because the older version had been dep-
recated. However, this was not possible at the time with
Tartiflette. Furthermore, there seemed to be little recent
activity on the GitHub repository, which led to doubts that
we would be able to get a fix for the memory leak or that
there would be sufficient future development to properly sup-
port the latest WebSocket protocol. Therefore, we searched
for a new GraphQL API that was actively maintained that
supported the new WebSocket protocol, which led us to
Strawberry. This was followed by a large effort to refactor
the Coniql application to use Strawberry. This highlights
one of the risks of relying on third-party technologies that
may not continue to be maintained in the future.

In the early stages of refactoring Coniql to use the Straw-
berry API we discovered a few issues and immediately
made use of the active Strawberry community. The ma-
jority of these issues were discovered when testing the new
WebSocket protocol (graphql-transport-ws) and high-
lighted bugs in the underlying Strawberry implementation.
These bugs were likely present because few developers have
refactored their client applications to use the new WebSocket
and so this part of the Strawberry code had yet to be thor-
oughly tested. We initially discovered a problem with Web-
Socket connections not being properly closed down, and this
resulted in a memory leak from connections that were left
open and consuming resources until they were eventually

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO02

MO4BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

192

Software

Software Best Practices



Table 1: Table showing the results from running the performance tests with a single GraphQL client collecting 36,000
samples from N PVs that are updating at 10 Hz. The table shows how the averaged CPU usage and number of dropped
results vary with the number of PVs subscribed to from the client. The second and third columns show the results from the
first set of performance tests run on Coniql before any performance improvements were made. The results show that no
updates are missed when the CPU is lower than the maximum of 100 % but this value dramatically increases as soon as the
CPU is at its maximum, which occurs at ≈ 200 PV subscriptions from a single client. At 500 PV subscriptions we receive
approximately one in four of the updates, dropping the other three. The fourth and fifth columns show the results after
making performance improvements to Coniql (described in detail in the Performance Improvements subsection) and show a
decrease in CPU usage when CPU is below 100 % as well as fewer dropped updates when it is near 100 %.

Initial Performance Performance after Improvements

Number of PVs Average CPU Average number
of dropped updates Average CPU Average number

of dropped updates
10 20.52 % 0 13.69 % 0
50 53.32 % 0 34.53 % 0
100 74.55 % 0 54.91 % 0
200 100.00 % 3,811 92.60 % 16
500 100.00 % 101,829 100.00 % 66,929

cleaned up by the garbage collector. We brought this to the
attention of the Strawberry community and received imme-
diate support. We proposed a solution that was subsequently
reviewed by the Strawberry code owners and promptly ac-
cepted and merged, triggering an immediate release of a new
version.

Another issue we came across was related to the perfor-
mance of GraphQL subscriptions using the new WebSocket
protocol (graphql-transport-ws) when compared to us-
ing the old protocol (graphql-ws). We ran a set of per-
formance tests on the Coniql application (see the following
section for full details) and found that the CPU usage was
consistently higher when using the new WebSocket protocol
over the old. Again, this had likely not been detected previ-
ously due to slow adoption of the new WebSocket protocol
by the broader community. Nevertheless, we were able to
determine where there was a slow down in the underlying
Strawberry code and proposed a solution, which, after some
discussion, was accepted and merged.

There are downsides to adopting libraries so early in their
development. New releases frequently break compatibility,
which has resulted in several patches to our own code. Fortu-
nately, extensive automated test suites and lint checks allow
us to catch these issues promptly. To mitigate these issues,
we pin the Strawberry dependency in our Coniql installation
to use a specific version. Before updating to a newer version,
we run our test suites and lint checks while also checking
for any performance degradation. We expect the volatility
of updates to diminish in the future as the library becomes
more stable and more widely adopted.

In summary, we have found that the Strawberry GraphQL
library provides all of the functionality we require and is
straightforward to learn and integrate within applications.
Our experience with the Strawberry GraphQL community
has so far been very positive, with quick response times to
issues and PRs allowing efficient development.

PERFORMANCE
The demands on the Coniql application are very high.

Coniql must be able to serve thousands of PVs updating at
rates of up to 10 Hz and must also be able to handle hun-
dreds of client connections. In order to verify that Coniql
would be able to achieve this we developed a set of perfor-
mance tests to measure how well Coniql behaves under such
conditions. Our performance tests aim to simulate the real
end-to-end use case as closely as possible. To do this we use
an EPICS IOC with a number of individual PVs increment-
ing by one at a rate of 10 Hz. The performance test itself
runs in Python and creates a GraphQL client that connects to
Coniql via a WebSocket and initiates a subscription request
for each PV running in the EPICS IOC, the number of which
is configurable in the performance test parameters. We run
the test until we have received a defined number of updates
(samples) from each subscribed PV and then analyse the
collected results to determine how many updates have been
missed, i.e. how many events Coniql did not send to the
client. From this we can estimate the average number of
updates missed per subscription. This scenario could occur
if updates are coming in too quickly for Coniql to process
and return and so they get dropped in favour of the latest
update. Monitoring the number of dropped updates allows
us to ensure that Coniql is processing all of the PV updates
correctly. We also measure the CPU and memory usage of
Coniql while all of the subscriptions are running and com-
pute the average usage at the end of the test. We have also
made the number of GraphQL clients configurable, allowing
us to simulate multiple clients, each setting up a single Web-
Socket connection, and measure how the associated load
affects Coniql.

After running an initial set of tests we discovered that the
performance of Coniql was far from optimal. The second
and third columns in Table 1 show a summary of the initial
results for a single client. We find that we can comfortably
support 100 subscriptions to PVs updating at 10 Hz with

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO02

Software

Software Best Practices

MO4BCO02

193

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Table 2: Table showing the results from the performance test where the number of GraphQL clients is varied. Each client is
collecting 36,000 subscription samples from N PVs that are updating at 10 Hz. The second and third columns show the
results from tests run on Coniql before any performance improvements were made. The table shows how the average CPU
usage varies with the number of clients and the number of PV subscriptions. The fourth and fifth columns show the results
after making performance improvements to Coniql (described in detail in the Performance Improvements subsection) and
demonstrate a ∼30 % decrease in CPU usage.

Initial Performance Performance after Improvements
Number of
clients

Number of
PVs

Average
CPU

Average number
of dropped results Average CPU Average number

of dropped updates
1 100 74.55 % 0 54.91 % 0
2 50 73.70 % 0 51.88 % 0
10 10 75.47 % 0 51.73 % 0

zero dropped updates, however the CPU usage is already
quite high. At 200 PV subscriptions we have reached 100 %
CPU, the maximum CPU the application can use, and the
number of dropped updates starts to increase.

Table 2 shows the results for the performance test runs
where we increased the number of clients. For these tests
we kept the total number of PV subscriptions constant and
varied the number of separate clients. The results show that
the CPU use is relatively constant (for a fixed total number
of PVs) and the additional WebSocket connections that the
Coniql GraphQL server has to respond to do not have a
significant impact on performance.

Performance Improvements
We have made some initial attempts to improve the perfor-

mance of Coniql. We used the sampling profiler py-spy [18]
to identify where most of the time is being spent within
the code. We found that most of the time spent process-
ing results is done using async processing. As a result we
have now minimised the number of async calls made within
the code meaning that all of our resolver functions are now
synchronous. This led to a 10 − 20% improvement in perfor-
mance. We also improved the performance for two or more
clients subscribing to the same PVs by ensuring Coniql only
maintains a single EPICS camonitor for each PV instead of
creating a new one for each client. When running 20 clients
requesting the same PV information this led to a 6−8 % CPU
improvement. The current main users of our Coniql instance
are the machine status displays, which provide information
on the current state and operating conditions of the machine.
These all display similar information and therefore benefit
from this improvement. The fourth and fifth columns of
Table 1 and Table 2 show the results from the performance
tests after making these updates. They show that CPU usage
has decreased as has the number of dropped updates when
nearing 100 %.

After these improvements approximately 1 % of the time is
spent in the Coniql code, with the majority of time now spent
in high-level Strawberry code that calls into the lower-level
graphql-core library. This code first parses and validates the
GraphQL query before executing it. Next, in the execution
phase the executor calls the resolve functions, starting from

the top level of the query, and then waits until all resolvers
have returned a value before formatting and returning the
result. It is not yet clear why this process should take so
long and any improvements here may require collaboration
with the graphql-core project.

We have significantly improved the performance of Coniql
with the changes described above, yet the performance of
a single instance of Coniql still cannot support multiple
screens without dropping a large number of updates. How-
ever, we have been able to mitigate the performance issues
using Kubernetes [19] to deploy the application. We cur-
rently deploy eight Coniql replicas to a Kubernetes cluster
with load balancing. Each client establishes one WebSocket
connection with one of the replicas, therefore the clients
are load balanced in a sensible way. We have live monitors
monitoring the Kubernetes pods to verify that all Coniql
instances are running at less than 100 % CPU, meaning that
they are functioning correctly and should not be dropping
PV updates to connected web clients. Eight Coniql replicas
are currently sufficient to serve PV data to the ≈ 50 ma-
chine status screens that have now been ported to the web
UI application.

FUTURE PLANS
The performance issues of Coniql detailed in the previ-

ous section are a problem for Diamond going forward. It
implies that we will need many more Coniql replicas de-
ployed in Kubernetes to support the number of PV updates
and the number of clients expected from a control system
UI made up of machine status screens and operator screens
across multiple beamlines. This would result in using a
large amount of resources, which is not ideal. Whilst we
have made significant improvements to the performance of
Coniql within our code and some in the Strawberry library,
we will investigate further changes including whether alter-
ing the shape of our subscription schema will improve the
speed at which requests can be processed in the low level
graphql-core code.

We will also consider alternatives to GraphQL if it cannot
meet our requirements. One possible alternative is PV Web-
Socket (pvws) [20], which provides a Websocket for EPICS
CA and PV access. However, we have yet to evaluate the

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO02

MO4BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

194

Software

Software Best Practices



performance of this or any other alternatives. Finally, we
plan to add support for the EPICS PVAccess protocol (PVA)
to Coniql.

CONCLUSION
We are working to improve and update our back-end

Coniql application to make it suitable for our requirements
to serve EPICS PV data to web UI clients. We have had a
positive experience working with the Strawberry code own-
ers and have managed to get issues fixed quickly, whilst also
giving back to the community. However, Strawberry is still
in early development and this can lead to issues with compat-
ibility. We are also aware that, as with any third-party library,
there is a risk that it may not continue to be maintained in
the future thereby making any arising issues difficult to fix.

We have verified that Coniql has the potential to fulfill
the requirements of a back-end to a web UI, however the
performance of the application in terms of CPU usage and
number of dropped PV updates is not as good as expected.
At the moment it appears that we are constrained by the per-
formance in the graphql-core library. We have been able to
mitigate the issue with performance in production by deploy-
ing multiple instances of Coniql to Kubernetes, but there is a
limit to how much we can scale in this way due to resources
usage. Future work will go into further improving the per-
formance of the Coniql application and also investigating
other alternatives so that our application has the ability to
support the future control system web based UIs.

REFERENCES
[1] EDM, https://www.slac.stanford.edu/grp/cd/
soft/epics/extensions/edm/edm.html

[2] CS-Studio, https://controlsystemstudio.org

[3] React, https://react.dev

[4] Redux, https://redux.js.org/

[5] Coniql,
https://github.com/DiamondLightSource/coniql

[6] EPICS, https://epics-controls.org

[7] GraphQL, https://graphql.org

[8] WebSockets, https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API

[9] aioca PyPI, https://pypi.org/project/aioca

[10] asyncio PyPI, https://pypi.org/project/asyncio

[11] graphQL-core,
https://pypi.org/project/graphql-core

[12] Strawberry GraphQL, httbps://strawberry.rocks

[13] graphql-ws library, https://www.npmjs.com/package/
subscriptions-transport-ws

[14] grahql-transport-ws library, https://www.npmjs.com/
package/graphql-ws

[15] Strawberry GraphQL GitHub, https://github.com/
strawberry-graphql/strawberry

[16] GitHub, https://github.com/

[17] Tartiflette, https://tartiflette.io

[18] pyspy, https://pypi.org/project/py-spy

[19] Kubernetes, https://kubernetes.io

[20] pvws, https://github.com/ornl-epics/pvws

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO02

Software

Software Best Practices

MO4BCO02

195

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


