
USING BDD TESTING IN SKAO: CHALLENGES AND OPPORTUNITIES
V. L. Allan, University of Cambridge, Cambridge, UK∗

G. Brajnik, University of Udine and IDS, Udine, Italy
R. Brederode, SKAO, Macclesfield, UK

on behalf of the The SKA Software Collaboration

Abstract
The SKAO (Square Kilometre Array Observatory) is one

observatory, with two telescopes on three continents. It will
be the world’s largest radio telescope o, and will be able
to observe the sky with unprecedented sensitivity and res-
olution. The SKAO software and computing systems will
largely be responsible for orchestrating the observatory and
associated telescopes, and processing the science data, be-
fore data products are distributed to regional science centres.
The Scaled Agile Framework (SAFe™) is being leveraged
to coordinate over thirty lean agile development teams that
are distributed throughout the world. In this paper, we report
on our experience in using the Scaled Agile Framework, the
successes we have enjoyed, as well as the impediments and
challenges that have stood in our way.

INTRODUCTION
In this paper, we will provide an account of our attempts

to adopt Behaviour Driven Development (BDD) and system
testing, particularly for our control system based on Tango,
with the goal of providing testers of control systems for other
instruments with enough information to decide whether to
use such an approach themselves. We will briefly provide
the context of the SKAO (SKA Observatory), then look
at our testing goals and challenges, focusing on automated
testing. We will then explain what BDD testing is and what
it has to offer us, and the progress we have made towards
our goals while trying to use the approach. We look at
the challenges imposed for creating testware to implement
BDD tests for finite state automata. We will also discuss
the issues we have experienced with roll-out, particularly in
the context of the control system, and our current plans. We
explore the organisational structures that hinder and help us,
documenting our experience and conclusions for the benefit
of future decision makers.

THE SKA PROJECT
The Square Kilometre Array Observatory is one obser-

vatory, running two telescopes, over three continents. The
headquarters are in the UK, and there are two telescopes:
one is a low frequency (50-350MHz) telescope, consisting
of hundred of thousands dipole antennas grouped together
into stations (referred to as the Low telescope) in the desert
in Western Australia, and the other is a mid frequency tele-
scope (350MHz-15.4GHz) consisting of hundreds of dishes
(the Mid telescope) in the Karoo desert in South Africa [1,2].

∗ vla22@cam.ac.uk

To build these telescopes, a global collaboration spanning
multiple countries and timezones has been established. Rees
provides a more detailed account of the current state of the
project [3].

In Fig. 1, we can see the two telescopes (the Low Array
and Dish sub-systems on the diagram) are each connected
to a Central Signal Processor (CSP) and a Science Data
Processor (SDP), plus numerous supporting sub-systems
(Synchronisation and Timing, Network Manager, Telescope
Manager Control (TMC), a High Performance Compute
Platform, plus eventually a Very Long Baseline Interferome-
try (VLBI) sub-system and SRCs (SKA Regional Centres)).
These systems are used to collect astronomical signals from
the sky (using the antennas and dishes in the desert), corre-
late those signals in the CSP for each telescope, then process
those data on supercomputers, turning them into a product
that can be delivered to SRCs for use by scientists. Both
telescopes are controlled using the Tango control system,
so most sub-systems will have one or more Tango devices
which allow the transfer of commands and monitoring data,
including system health data [4].

Each of these sub-systems is made up of multiple com-
ponents. For example, the TMC contains a Central Node,
which interfaces with the tools for defining telescope ob-
servations, a Subarray node, which controls a subset of the
dishes or antennas for the relevant telescope, plus compo-
nents to control and monitor the CSP, SDP, and dishes/an-
tennas for each telescope.

To organize the software development work to create these
components, we use the Scaled Agile Framework®(SAFe®),
which allows us to co-ordinate multiple development teams
on a common cadence [5]. Our teams are grouped into Agile
Release Trains (ARTs), which deliver the telescope software.
These ARTs span several countries; indeed, some teams are
also highly distributed.

The work is cadenced using PIs (Planning Intervals) that
last one quarter; each of these begins with a review of the
previous PI, and then there is a Planning week where we
converge on our plans for the subsequent PI, based on goals
that are set by software architects and product managers
(PMs). While we can pivot during a PI, that is generally
not desirable; therefore major changes to or evolution of our
testing process will usually occur not more than once per
quarter.

TESTING GOALS AND CHALLENGES
Brajnik et al. have noted that the SKAO has several goals

and challenges when considering software testing [6]. Our

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

Software

Software Best Practices

MO4BCO01

183

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: Component and Connector diagram of the top level of the SKAO software system.

overriding goal is to have a sustainable process, so that de-
velopers and testers do not suffer burnout and the process
continuously yields a return on investment. While we will
use manual tests, especially for user acceptance testing, we
also want to have as many tests automated as possible. The
telescope has a planned 50 year lifespan, so we anticipate
many changes to the software, whether this is to the operator
Graphical User Interfaces (GUIs), the underlying compute
platform software, operating systems, or to other software
libraries on which we depend. We have a goal to enable
developers to create new releases in less than one working
day; this is not feasible without extensive automated soft-
ware testing [7]. Thus to make the process sustainable, it is
important to automate as much as possible.

In practice this means:

• the testing process needs to be performed quickly and
frequently, so that there are no disincentives to perform
the tests before deployment,

• the process should support the development team, by
helping them identify and localise bugs quickly and
easily,

• the process should support all stakeholders by helping
them understand and validate requirements and specifi-
cations, and

• the process is economically viable.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

MO4BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

184

Software

Software Best Practices



Our Challenges
• Our software covers many different domains, includ-

ing, but not limited to: high performance computing,
control systems, signal processing, radio astronomy
specialised applications, and GUIs. This often requires
different test approaches to be used for the different
domains.

• Diverse levels of skill of developers, architects,and test
engineers, make it difficult to develop a unified and
consistent language and to share effectively problems
and practices.

• High levels of team autonomy, as teams have a good
deal of latitude in their detailed implementation, as well
as in the specification and APIs of components. This is
great for trying out new approaches and for using the
high specialised competences located within specific
teams, but it also can lead to unsupportable diversity
of tools and approaches; hence co-ordinating around
the best approach is difficult.

• Testware and integration/system test development
needs co-ordinating across multiple teams, and this can
lead to ownership problems and alignment problems.

• Some of our tests require specialised hardware (e.g.
Field Programmable Gate Arrays (FPGAs)) and
hardware-in-the-loop, which complicates the infrastruc-
ture and management of test environments, as explained
in .

• Our integration testing is under-resourced, as a gap
arose as we transitioned from the design phase to the
construction phase, where some responsibilities for
testing were covered, but not all of them.

• Our highly distributed nature, with developers from
many cultures, and many widely-separated timezones.

Most of these challenges are not unique to SKAO. There
are many highly distributed organisations, or projects where
the developers are not co-located, including open source
software projects and multinational companies. There are
many organisations that are working with specialist hard-
ware. Most organisations have to contend with diverse skill
levels, if only because of the need to recruit new people.
However, these challenges combine; because of our dis-
tributed teams, it is hard to get the people with the expertise
together, as they can be in timezones 4-8 hours apart, and
the varying skill levels may mean that teams can get blocked
by not having the knowledge to proceed. Because of the
particular timezone configuration, some timeslots are highly
contested because of the large number of teams needing to
communicate, reducing the opportunity for ad-hoc meetings.
Similarly, the high level of team autonomy means that some
teams have developed good solutions, but we then have the
challenge of sharing that solution, or adapting that solution
so that it is more generally applicable. However, we have

high levels of support from senior management, who are
keen to build in quality, so there is support for testing and
integration activities.

Implementation
To implement these goals we have:

• set up a Testing Community of Practice. This is some-
thing that SAFe recommends in order to cut across
potential silos caused by the grouping of teams into
ARTs, and these are designed to foster best practice,
and share knowledge [8].

• created a strategy and policy document, that we rou-
tinely update (we have an update planned for the current
PI) [9].

• engaged with the PI planning process each quarter to
set out more detailed plans. The success (or otherwise)
of the specific approaches tried recently are outlined
in

OUR SOFTWARE TESTING PROCESSES
ISTQB defines component integration testing as focusing

on the “interfaces and interactions between components”,
and notes that it is heavily dependent on the testing strategy
adopted [10].

They go on to define System testing as focusing on the
“overall behaviour and capabilities of an entire system or
product”, including functional and non-functional testing of
quality attributes, and define System integration testing as
focusing on the interfaces of the System Under Test (SUT)
to other services and/or external environments [10].

When testing a complex system with many moving parts,
there are two major things one can concentrate on: one is
interfaces, where contract testing techniques are useful; the
other is the behaviour of the system as a whole. While we
have investigated PACT and contract-based testing [11], we
have had more success pursuing the behavioural approach,
using BDD [12].

BDD is a development approach, which starts from the
goals of the organisation. It then uses scenarios and spec-
ification by example, which results in a specification for a
feature, focused on the most relevant examples [13]. The
scenario development helps foster a common language to
describe the system; the examples help support a test-first
approach, and also support the development of living docu-
mentation [14].

The starting point is to formulate these scenarios that de-
scribe the behaviour of the SUT, using the gherkin syntax.
This syntax consists of four words: Given, When, Then,
And. This allows one to set up complex scenarios, using an
informal English-based language that can, and should, refere
to the identified domain specific language (DSL). These sce-
narios can be used for either or both of manual or automated
testing.

The Given keyword starts a sentence that says what condi-
tion or state you expect your system to be in when starting a

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

Software

Software Best Practices

MO4BCO01

185

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



test. This condition can then be set up using the features of
the underlying test automation framework. Multiple starting
conditions (perhaps for other sub-systems) can be defined
by using the And keyword. The When keyword starts a sen-
tence that defines a trigger: this can be a change of state in
the system (for example, a failure) or a deliberate action by a
user (e.g. sending a command). Finally, the Then step states
what should happen as a result of the Then step. Again, mul-
tiple results can be chained together using the And keyword.
This is exemplified below:

Given I connect to an SDP subarray
And obsState is READY
When I call Scan
Then obsState is SCANNING
And scanID has the expected value [15]
Best practice is that there should be a single action or

change that is triggered when performing the When step.
This makes it easier to reuse the step, and to isolate what
went wrong if the test fails. Complex series of commands
can be put into a Then step; however, those should be built on
top of, and run subsequent to, the more isolated Then steps.
Tables of examples can be added to parameterise the test,
to explore more of the test space. This allows for running
complex scenarios, but after ensuring the basic behaviour
of the system is solid.

The great utility of BDD tests is in formulating new fea-
tures. BDD tests are specified by example; this works well
with defining automated tests, and also helps developers
assess and code the boundaries of a new feature. These dis-
cussions help bridge the gap between the conception that
the architects and designers, the developers writing the code,
and the testers and users who will test and use the system,
have about system behaviour.

This thus provides living documentation of the system: we
have a set of examples to guide our intuition about how the
system should behave, that are then tied to the code, and if
we wish to change the behaviour of the system, our tests will
fail as the system is updated, thus causing us to update our
descriptions to reflect the new behaviour. Similarly, if the
intended behaviour of the system is not changing, but some
of the system software is (whether our own code, updated
libraries, new operating systems), we can detect regressions.

SKAO Testing Environments and Process
In SKAO, we start from a position where we expect (and

nearly always have) >80% source code coverage achieved
by unit tests for repositories containing individual compo-
nents. Our integration test process encourages testing those
components with mocks or emulators to perform compo-
nent integration testing. Some of those components may
be within the same sub-system; others may be in a different
sub-system. The integration process then encourages tests
of sub-systems with mocked/emulated external interfaces in
our various test environments, described below.

The final integration can only be performed with the pro-
duction system, where we can get a complete signal chain

for multiple dishes or stations, supported by the full com-
pute hardware provision. This requires a rather complex
integration environments, as the costs of replicating a full
production system outweigh the benefits. However, we are
using a staged roll-out plan, so the first production system
(due in 2024) will act as a prototype and testbed for the
larger-scale systems that will follow.

We have three major environments, PSIs (prototype sys-
tem integration environments), intended to trial hardware
components of the signal chain, ITFs (integration test fa-
cilities), where hardware and software is qualified before
deployment to the telescope sites, and cloud integration en-
vironments, some of which are persistent, and others which
are created on demand.

The PSIs are intended for testing specialist hardware, such
as FPGAs, which we cannot provision within our cloud en-
vironments; General Processing Units (GPUs) are not con-
sidered specialist here, as they are available in our cloud
environment. Testing in our cloud environments may neces-
sitate configuration to use mocks or sims where otherwise a
component would require specialist hardware; for all other
software components, we expect to be able to do basic tests
in the cloud. The tests in the PSIs and cloud environments
include the unit tests for components, but also BDD tests for
components and sub-systems, and can include combinations
thereof.

After testing in either or both of a PSI and our cloud
environments, individual components and sub-systems are
made available to the ITFs (integration test facilities) in order
to perform formal verification, first of individual products
and sub-systems, and thereafter to verify that the integration
of multiple sub-systems works correctly. There are two
ITFs: one for each telescope, based in Australia and South
Africa. There are three PSIs, in Australia, Canada, and the
Netherlands, with different specialisations.

There are limitations to what can be achieved in the cloud
environment and in the ITFs. The ITFs integrate multiple
sub-systems relatively late, so the cloud environment can
be used to detect issues before code is run in the ITF. The
ITFs also do not have a powerful compute cluster, so they
are unable to perform load tests of the control system, and
cannot perform performance tests of the data processing.
Indeed, full tests of the data processing cannot easily be
performed on our standard cloud environment, and usually
requires access to large HPC (High performance computing)
clusters; however, there are tests that can be run in the cloud
environment that cannot easily be run with the much more
limited ITF resources.

The ITFs and PISIs can perform much better tests on the
signal chain than the cloud environment can, as they can inte-
grate FPGAs, and use signal generators and other specialist
test equipment. Therefore, we are working towards a model
where BDD tests can be used in the PSIs and cloud envi-
ronment to test respectively the behaviour of components
in the signal chain, and components in the control system,
before verification (where that is possible) in the ITFs. The
precise test steps needed in the ITFs may not be suitable

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

MO4BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

186

Software

Software Best Practices



for use in the cloud environment, as they are primarily man-
ual (i.e. directly triggered by a tester); however, we aim to
converge on our terminology, to create our shared Domain
specific language (DSL) that describes how to operate radio
telescopes.

Without a DSL, there can be issues, as gherkin is not a
precise language. Though the basic syntax is simple, steps
can be defined with the full use of natural (English) language.
Therefore, defining a scenario or step in gherkin has multiple
possible ways to be interpreted in code, or even multiple
ways to be understood in English. Steps can be defined using
different terminology, but with the same intent. Therefore,
discussion and convergence on and creation of a DSL are
essential.

Despite the difficulties, the benefits that BDD can offer
around specifying system behaviour, coupled with the long-
term nature of the project (meaning that benefits can be re-
alised over multiple years), encourage us to continue. Some
of these difficulties, but also the benefits, are elucidated
below.

TUNING THE INTEGRATION PROCESS
On paper, the principles behind BDD testing, and the the-

ory of using those inside the SKAO, look good, even though
our testing environments are more complex than usual. How-
ever, we have encountered problems when implementing the
process.

Our first prototypes of BDD tests happened over 3 years
ago, at the level of an individual team, where one of us (VA)
wrote the first gherkin definitions. Our inexperience with the
testing technique and the tools to support it meant that we
first tried it out at the unit test level, which we swiftly found
did not work. These steps were implemented in Python,
using the pytest-bdd module, and the results were reported
through the XRray plugin to Jira, our work management
system [16], thus prototyping a generic test management
platform. For the initial experiment, at the unit test level, we
quickly found that we were flooding Jira with test executions
and tests that were not helpful to stakeholders wanting to
understand the capabilities of the wider system.

The team subsequently refactored the tests to work at a
component level or higher, and Jira now has a record of
those test results in Fig. 2. These can be used by the PMs
for the SDP to ensure there are no regressions, and are ex-
tended when new features are added to the software, without
overwhelming the PMs with unnecessary detail. In subse-
quent PIs we have evolved our use of Xray and Jira for test
management, based on this successful prototype.

Tango Testing Challenges
When we tried to roll this out more widely over the next

8 PIs, we found a number of technical issues with Tango
that made implementing BDD testing challenging. Firstly,
every Tango device expects to be deployed with a TangoDB
database with which it registers. This is annoying for unit
testing, where it takes more time and more resources (either

Figure 2: Screenshot of a report on the SDP integration tests,
showing 6 passed and 16 failed tests.

on a developer’s laptop or on a virtual machine in the cloud
to spin up a database. The solution SKAO came up with
was contributed back to the PyTango project [17]. Similarly,
it is complex testing multiple Tango devices that interact
asynchronously, as if the test requires a particular response,
it may come after some other response from another device.
This has been addressed [18].

We were also trying to develop a testware suite to help
us with managing our state machine for some of our Tango
devices. This ultimately failed as we under-resourced its
development, as we discovered a gap in our resourcing men-
tioned in .

Finally, writing test fixtures for Tango devices is be chal-
lenging, as they are finite state automata. This means that
for a test script to arrange to be in the state desired for the
starting Given condition, one may have to pass through sev-
eral other states in order to arrive there, unless one happens
to be in a state in which it is valid to command or trigger
that state transition. As an example shown in the model of
one of our state machines in Fig. 3, in order to run a scan to
collect data from the sky (by sending the SCAN command
to one of our Tango subarray devices), one must be in the
READY state. To reach the READY state, one must first
have sent a CONFIGURE command, again from the correct
starting state. Thus, if one is not already in IDLE, one must
first perform the steps to reach that state before one can issue
the SCAN command, unless one is testing specifically the
system behaviour when it is sent the SCAN command and
is not in a state where it is able to execute that command.

This issue is less often seen in other domains; for example,
when testing an e-commerce site, one may want to set a state
for a test where a customer is logged in, with a stored address
for shipping. To do this, a customer object can be mocked.
The mock can contain all the data needed, and it is a simple
matter to write the test to use the mock, and make it look
like there is a logged-in customer with a stored address. This
can be used through multiple tests of customer actions, or a
separate mock can be created to test alternate flows (when
the customer wishes to update an address, for example). The

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

Software

Software Best Practices

MO4BCO01

187

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 3: SKA Observing State Model

presence of other customer objects (whether mocks or real
objects) will not affect the vast majority of tests.

In contrast, for a finite state automaton, we must force the
components in the SUT through the states, including any
data updates that are needed to arrive in a valid state, with
valid data stored, for a given test. This also makes cleaning
up after tests, whether passed or failed, more complex. This
adds considerably to the complexity of the testware.

Working With Developers
Meanwhile, in order to get developers started, we referred

them to documentation on BDD testing, especially the Xray
plugin for Jira. We provided a BDD testing guide and walk-
through to provide information on our local context, in par-
ticular to enable them to connect BDD tests with Jira [19,20].
This was taken up by some teams, though with limited suc-
cess, in part because of the issues described above, which we
discovered during the roll-out process. We found that not all
our PMs and architects were familiar enough with BDD to
help write good test steps, though they could come up with
good examples. We also found that where we did try to cre-
ate BDD tests for new features in that way, teams then found
that the tests were hard to implement, sometimes through
poor formulation, sometimes because technical issues (such
as those outlined above) made implementing test fixtures
difficult. The teams also believed that they were not able to
change these test step definitions; this was addressed by a
discussion during a Testing Community of Practice meeting,
where we explained that creating the gherkin step definitions
was a dialogue, not something set in stone. While the end
result has to be a specification of a behaviour, steps can be

adjusted to facilitate test implementation. This appears to
have improved the situation; the developers are not currently
raising this as an issue.

Further Roll-Out
Facing low adoption and a lack of understanding of what

our system could do, we then tried to take a more top-down
approach, to look at the behaviour of multiple sub-systems,
as adoption at the sub-system and component level has been
patchy. We started by formulating goals that we wished to
achieve during PI17, and attempted to construct BDD tests
based upon those goals. However, we found that the way
the goals were formulated, and the way the software system
was designed, made it difficult to define good scenarios.
We also were defining the tests post-facto, based primarily
on already-implemented code, so we could see none of the
design-related benefits. Teams found it hard to own any
of: the test step definitions; the test implementations; the
testware development. We also found it hard to get good
traceability between the tests that were being implemented
and the features that were meant to achieve the goals. This
meant that teams didn’t see the point of the tests, nor did our
major stakeholders see the links between the code, the tests,
and the living documentation of system behaviour.

Therefore in the next PI (PI18, March-May 2023), we
improved our goal definition, and began defining our test
steps earlier, to improve the linkage between test definition
and design. SKAO also started to use the reports in XRAY
to better understand our tests. We still lacked good mapping
between the tests and the features in all cases, and we still
lacked team ownership of the integration process.

In PI19 (June–August 2023), we worked closely with the
teams providing the TMC sub-system, where they improved
the test harness they were using, to use some of the asyn-
chronous testing techniques mentioned above, and to provide
a factory for simulated tango devices. With that foundation,
the teams could implement the infrastructure needed to run
BDD tests, including defining the fixtures needed. Two of
the authors and two TMC developers devised a set of scenar-
ios for our subarray control device, which we then discussed
with the OMC architects. This process revealed that we had
not yet considered how the system should behave in some
corner cases, which thus revealed more design work that
needed to be done. The discussions revealed to the authors
(who are testing specialists, but not experts in Tango, nor
in the details of the SKAO control system design) some
complexities about the state model; this will help inform UI
(User Interface) design activities. The team implemented
the scenarios where the design could be agreed upon, and
uncovered a new bug during the process [21].

The BDD scenarios for the TMC are complex, as effec-
tively these are scenarios for the behaviour of the whole
control system. For the TMC to report on the health state
of the telescope, it must aggregate the health statuses of the
various sub-systems, which themselves must aggregate the
health of their various components. Therefore, the scenar-
ios look at what happens when various sub-systems are in

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

MO4BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

188

Software

Software Best Practices



the FAULT or DEGRADED states. We also consider what
happens when various commands are issued, but not neces-
sarily successfully completed by a given sub-system. This
was the area where we encountered gaps in our design and
implementation, which we can now follow up on using the
SAFe processes.

The TMC teams are now equipped to extend their BDD
tests as new scenarios are agreed upon, and to improve some
of their existing BDD tests, based on the coaching given
during PI19. They should also now be able to use the fixtures
to test new features more easily, and also use the techniques
they have learnt to help devise the BDD scenarios for those
new features; we will be able to evaluate this at the end of
this PI. The exercise, through the conversations between the
teams, the architects, and the test experts, revealed gaps in
our design, and helped fill in gaps in our understanding. The
BDD tests now provide a record of the scenarios, showing
the current capabilities of the system, and the associated
Jira reports show the current test success (or failure), thus
providing us with a set of regression tests.

While we have been successful with pairs of teams work-
ing together to perform interface testing, getting buy-in from
multiple teams for system integration still eludes us. This
may be easier in smaller and/or less distributed organisations.
This is partly because unless teams happen to be in similar
timezones, it is hard to arrange meetings and discussions
as mentioned in . Because the system tests and testware
are owned by everyone, there is also no direct authority for
someone to say that they want a particular feature of the
testware, or a particular reworking of a test. This may be
easier in smaller and/or less distributed organisations, where
it is easier to get a critical mass of people together.

CURRENT STATUS AND FUTURE
IMPROVEMENTS

We can see that the issues with implementing BDD test-
ing, especially of the control system, fall into two categories,
technical and social. While technical issues may be diffi-
cult, we have either solved them, have workarounds, or a
clear path to improvement. The social issues around com-
munication and adoption are harder to solve. Many of these
issues are related to our complex system and our highly dis-
tributed organisation. However, the social benefits are where
BDD can deliver its most profound benefits, by fostering
discussion, finding examples, creating and using a common
language, and providing living documentation. Hence we
are motivated to persist, especially given the long lifetime
of the project, which encourages us to make the up-front
investment in quality, in order to ensure smooth operation
and maintenance.

To address this, we are pursuing more point-to-point inte-
gration in PI20 (the current PI), where two teams integrate
their components or sub-systems together, while we resource
the work to co-ordinate multiple sub-system tests. This will
extend the close work that was performed with the teams
working on the TMC sub-system during PI19, and allow us

to continue work on defining a DSL, so that we have a library
of steps available for when we secure our resources. This
will also allow some knowledge transfer between testing
experts and the domain experts within the teams. While this
is slow, slower than we would like, it is the best we can do
with the available resources.

We are also organising hackathons, focusing on compo-
nent and sub-system tests. We will run some remotely, with
a format of two half days (to minimise the worst of the time
zone related issues), first of all looking at test code in groups,
then reviewing merge requests. We plan then to run a face-
to-face hackathon at our in-person PI planning meeting in
December 2023.

Without testing multiple sub-systems together in the cloud,
we are accruing risk, as such complex systems often exhibit
emergent behaviour, and it is vital to identify any misbe-
haviour before we deploy to a production system in 2024.
Once resourced, we intend refactor our testware, first to re-
enable tests of multiple sub-systems, and then to provide
tools that can be used by the sub-systems as part of their
integration testing. This would be trialled with the teams, to
drive better adoption than we have achieved hitherto.

CONCLUSIONS
BDD testing has a lot to offer in the context of testing

control systems for complex instruments, such as the SKAO
telescopes. We have already seen an improvement in the
understanding of the tests, through the beginning of develop-
ment of a DSL. We have detected new bugs, and uncovered
a divergence between our design and implementation.

We have also seen that it requires considerable attention
to the accompanying testware, and to the education of the
people who will need to work with the BDD tests; this pa-
per should provide some idea of the potential pitfalls other
adopters may wish to avoid.

We hope that this paper inspires others to adopt BDD test-
ing processes for their control systems, or at least provides
them with the information they need to assess whether using
BDD testing techniques is likely to be of benefit.

REFERENCES
[1] SKA Mid Telescope, https://www.skao.int/en/
explore/telescopes/ska-mid

[2] SKA Low Telescope, https://www.skao.int/en/
explore/telescopes/ska-low

[3] N. Rees, “SKA Project Status Update”, presented at the
ICALEPCS’23, Cape Town, South Africa, Oct. 2023, pa-
per FR1BCO03, this conference.

[4] Tango, https://www.tango-controls.org/
[5] Scaled Agile Framework,
https://scaledagileframework.com/

[6] G. Brajnik, M. Bartolini, N. Rees, “A sustainable software
testing process for the Square Kilometre Array Project”, in
INCOSE Int. Symp., 2023, vol. 30, no. 1, pp. 109-123.

[7] Reduce the average time for delivery of software changes,
https://jira.skatelescope.org/browse/SPO-2673

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

Software

Software Best Practices

MO4BCO01

189

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



[8] Communities of Practice,
https://scaledagileframework.com/communities-
of-practice/

[9] Software Testing Policy and Strategy,
https://developer.skao.int/en/latest/
policies/ska-testing-policy-and-strategy.htm

[10] Certified Tester Foundation Level Syllabus, pp. 27-8, 2023.
https://istqb-main-web-prod.s3.amazonaws.com/
media/documents/ISTQB_CTFL_Syllabus-v4.0.pdf

[11] PACT, https://docs.pact.io/

[12] BDD Testing, https://www.bddtesting.com/

[13] J. F. Smart, J. Molak, “Chapter 1”, in BDD in Action, Shelter
Island, New York: Manning, 2023.

[14] G. Adzic, “Chapter:1 Key Benefits”, in Specification by exam-
ple: how successful teams deliver the right software, Shelter
Island, New York: Manning, 2011, ch.1.

[15] SDP scenarios, https://gitlab.com/ska-telescope/
sdp/ska-sdp-integration/-/blob/master/tests/
features/subarray.feature?ref_type=heads

[16] Xray - native Test Management for Jira, https://www.
getxray.app/

[17] Device Proxy, https://pytango.readthedocs.io/en/
stable/client_api/device_proxy.html

[18] D. Devereux, “Asynchronous Testing of Tango Devices in
SKA”, presented at the ICALEPCS’23, Cape Town, South
Africa, Oct. 2023, paper MO4BCO03, this conference.

[19] BDD Testing guide, https://developer.skao.int/en/
latest/tools/bdd-test-context.html

[20] BDD Walkthrough, https://developer.skao.int/en/
latest/tools/bdd-walkthrough.html

[21] TMC scenarios, https://gitlab.com/ska-telescope/
ska-tmc/ska-tmc-integration/-/tree/main/
tests/integration/tmc_harness?ref_type=heads

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO4BCO01

MO4BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

190

Software

Software Best Practices


