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Abstract

In the context of the High-Luminosity LHC project at
CERN, a platform has been developed to support groups
needing to host electronics in radiation-exposed areas. This
platform, called DI/OT, is based on a modular kit consist-
ing of a System Board, Peripheral Boards and a radiation-
tolerant power converter, all housed in a standard 3U crate.
Groups customise their systems by designing Peripheral
Boards and developing custom gateware and software for
the System Board, featuring an IGLOO2 flash-based FPGA.
It is compulsory for gateware designs to be radiation-tested
in dedicated facilities before deployment. This process can
be cumbersome and affects iteration time because access to
radiation testing facilities is a scarce commodity. To make
customisation more agile, we have developed a radiation-
tolerant System-on-Chip (SoC), so that a single gateware
design, extensively validated, can serve as a basis for differ-
ent applications by just changing the software running in the
processing unit of the SoC. HydRA (Hydra-like Resilient Ar-
chitecture) features a triplicated RISC-V processor for safely
running software in a radiation environment. This paper
describes the overall context for the project, and then moves
on to provide detailed explanations of all the design deci-
sions for making HydRA radiation-tolerant, including the
protection of programme and data memories. Test harnesses
are also described, along with a summary of the test results
so far. It concludes with ideas for further development and
plans for deployment in the LHC.

BACKGROUND

The High-Luminosity Large Hadron Collider (HL-LHC)
project [1] will increase the luminosity in the LHC in or-
der to provide more frequent collisions in the experiments
and maximise their discovery potential. This project brings
a number of challenges to the control system of the accel-
erators. In particular, in the lowest tier, some areas will
be exposed to increased levels of radiation, precluding the
possibility of installing off-the-shelf electronics. A dedi-
cated work package covers the development of a modular
radiation-tolerant platform [2] which can serve as a basis
for diverse systems. This allows equipment groups to capi-
talise on a set of basic building blocks and focus their efforts
on their customisation, avoiding unnecessary duplication of
developments and increasing overall quality.

∗ tristan.gingold@cern.ch

Figure 1: Distributed I/O Tier hardware kit.

THE DI/OT PLATFORM
The Distributed Input/Output Tier (DI/OT) project aims

at providing a modular kit for building systems in the lowest
tier of the control stack, directly interfacing to accelerator
equipment. The basic kit is illustrated in Fig. 1. Modules are
housed in a 3U Europa crate featuring a backplane compliant
with the CompactPCI Serial (CPCI-S.0) standard. Having a
fully passive backplane prevents problems related to radia-
tion in this critical component.

The left-most slot in the crate is reserved for the system
board. From that slot, a star topology in the backplane
allows communication with the other cards, called peripheral
boards. There are two variants of the kit:

• In the radiation-tolerant variant, the power supply is
designed in-house and the system board features a flash-
based IGLOO2 FPGA.

• In the non-radiation-tolerant variant, the power supply
can be purchased off-the-shelf (a bonus of having cho-
sen a standard format for the crate and backplane) and
the system board is based on a Xilinx Zynq Ultrascale+
SoC.

The DI/OT platform does not aim to replace well-
established solutions such as Programmable Logic Con-
trollers (PLCs) and modular electronics platforms based
on a bus (VME, uTCA, PXIe…). Instead, it focuses on two
use cases not well covered by these platforms:

• Electronics exposed to radiation.
• Systems in which the connectivity among boards is

fully custom for a given application. The fully-passive
backplane of DI/OT and the configurable nature of the
system board allow e.g. using some of the copper lanes
in the backplane to directly stream ADC data from a
peripheral board, connect interlocks, etc.

In the remainder of this article, we will focus on the
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radiation-tolerant system board and the HydRA SoC imple-
mented in its FPGA. The system board features an IGLOO2
flash-based FPGA and an FMC slot to host a communication
mezzanine. The nanoFIP FMC (see Fig. 1) is based on a
Microchip ProASIC3 FPGA and implements a radiation-
tolerant agent for the WorldFIP fieldbus. For applications
which need control of a rad-tol DI/OT system from a PLC,
the ProFIP card implements seamless translation between
Profinet and WorldFIP.

ISSUES WITH RADIATION
We need to protect electronics against two types of

radiation-induced effects [3]:
• Dose effects which accumulate through time and even-

tually lead to device failure. Protection is typically
achieved through a judicious choice of components.
Our target is being able to withstand more than 250 Gy.
This should provide for robust operation in excess of
10 years in most locations.

• Single-Event Effects (SEEs) are random disruptions
triggered when a particle goes through the chip. The
protections against these effects are the main object of
this paper.

The design of the HDL cannot protect against dose effects
(total ionising dose and displacement damage). These slowly
create defects in material and degrade electronics. However,
we carefully select components to choose those which are
the most robust and, before producing boards, we also test
the components. A dedicated team provides this service
at CERN. We also test the behaviour of the system when
irradiated by a Co60 source of gamma rays, in order to
have a rough idea of the maximum total dose the system
can withstand. If the yearly dose rate at the place where the
system will be installed is known, we can deduce the lifetime
of the system at this location.

The design of the HDL can protect against SEEs. Direct or
indirect ionisation due to a high-energy particle can change
the value of a gate and thus generate logical errors. The
classical protection is Triple Modular Redundancy (TMR),
which consists of triplicating a module and using a voter to
decide the value. As it is very unlikely that two modules are
hit at the same time, at least 2 out of 3 will give the correct
result and the voter can detect and correct the error. The
voter itself is often triplicated to give 3 correct results as
inputs to other triplicated modules.

Triplicating the logic takes a lot of resources: at least three
times the number of gates, without counting the logic to im-
plement the voters. Triplication also reduces the maximum
operating frequency.

To reduce the overhead, we can limit triplication to the
flip-flops, leaving out the combinatorial logic. The reason is
that Single Event Transients (SET) in the logic are rare and
have an effect only if they are captured by a flip-flop. If they
are not captured, the system self-corrects at the next clock
cycle. On the other hand, errors in flip-flops (Single Event
Upsets, SEU) cannot correct themselves, so they require
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Figure 2: CPU Architecture.

TMR protection.
In HydRA, we do not triplicate RAM (block memory).

RAM is a scarce resource and because only the data lines
being accessed are activated, TMR may not be effective
enough as errors can accumulate in non-accessed lines. The
usual technique used to protect RAM is based on error codes
where the data bus is extended to store such a code which can
be checked when a word is read. A simple error code like
parity can be used to detect a single error in a line, but the
error cannot be corrected, nor can a double error be detected.
A more powerful error code such as Error Correction Code
(ECC) can be used to detect a single or double error and
to correct a single error. To make it effective and avoid
accumulation of errors, it is necessary to periodically read
all the memory and correct the errors. This is implemented
by a scrubber.

HydRA
The software running on HydRA is bare-metal (no oper-

ating system) code, without hardware interrupts, as simple
as possible and fully deterministic. After initialisation, it
runs an infinite loop, reacting to events by polling.

CPU Architecture
The core of HydRA is a RISC-V compatible CPU. We

used our own core, named uRV [4]. It is a classic 5-stage
core, supporting only integer operations. In order to simplify
and reduce the size of the core, the optional multiplication
and division instructions are not enabled. Hardware inter-
rupts are also disabled.

Instruction memory is separated from data memory (see
Fig. 2). This simplifies the HDL design and prevents acci-
dental corruption of instructions in case of incorrect writes.
There is no pre-initialised data; the whole data memory is
cleared by hardware during reset. It is possible to read data
from the instruction memory, but not to modify it. Thanks to
this architecture, it is always possible to restart the software
running on a CPU, provided that software contains initiali-
sation routines at the start to take the hardware to a known
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state.
The CPU has access to a supervision unit, which is re-

sponsible for managing the health of HydRA: it counts the
number of errors, and parametrises the memory scrubbers.

The whole design, including the CPU, is triplicated. There
is an option in the synthesis tool to enable TMR but the tool
only implements flip-flop triplication. It is important to
understand that memory blocks (RAM) are not protected
with this TMR option.

Both instruction and data memories have therefore been
designed with ECC protection. There are 7 extra bits of error
code per 32 bits of data. When a word is read from memory,
the error code is checked. In case of a single error (which can
be either in the data or in the extra bits), the whole protected
word is corrected and rewritten in the memory before being
sent to the CPU. In case of double error, this is considered a
fatal failure and the CPU is reset. For data RAM, an extra
mechanism is required to support partial writes (like writing
a single byte in a word). In order to correctly update the
error code, the whole word must be read, possibly corrected
in case of single error, then modified and written with the
new error code.

There is one important detail that needs to be addressed.
The CPU contains a register file which contains the data of
each register that implemented using a RAM. So it is not
protected by the TMR.

We have two different implementations to protect the reg-
ister file.

The first one uses a manual TMR on the whole CPU where
the core is instantiated 3 times and voters are added which
compare the outputs of the three instances (their data and
instruction buses). If the voters detect that the output of one
CPU is different from that of the other 2, that CPU is marked
as defective and reset. The two other CPUs are now work-
ing in lock-step mode and any difference between them is
considered a failure. In order to fall back to a fully protected
situation, the software resets the three CPUs so they get
completely resynchronised. The monitoring of their outputs
resumes and the system goes back to normal operation.

This implementation is not very efficient as the logic of
the CPU core is triplicated and the flip-flops are replicated 9
times (3 times by the TMR option and 3 times by the manual
triplication). In this implementation, there is no hardware
scrubber for the register files. The software implements
manual scrubbing, periodically reading the flip-flop-based
registers and writing their contents into RAM. If there is
any divergence in the contents of the registers among the
three CPUs, it will be seen as a difference in their data buses
and resynchronised through a reset of the three CPUs as
described above.

The second implementation was designed later and is
smaller. It is based on ECC, and takes advantage of the
fact that our uRV implementation has 2 identical copies
of the RAM-based register file because an instruction can
read up to 2 registers during execution in a single clock
cycle. The register files are extended to store error codes,
which are computed on stores and checked on reads. In case
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Figure 3: System Architecture.

of a single error, a software exception handler is executed
instead of the faulty instruction to correct the error. We
take advantage of the RISC-V architecture which allows
implementation-defined instructions. The added instruction
takes the contents of the register in the uncorrupted register
file and writes them to the corrupted one so the error is
corrected.

After power-up, the data in the memories are in a random
state, so reading any word will result in an error. A state
machine fills the whole instruction memory and clears the
whole data memory so that all words are in a coherent state.
After that, the CPU initialises all the registers, writing ze-
roes plus the appropriate ECC. Once this initialisation is
complete, the user code can run.

System Architecture
The FPGA contains two HydRA CPUs: one for the man-

agement and one for the user. See Fig. 3. The first HydRA
CPU is used for the board management. It has three main
purposes:

• It periodically scans sensors on I2C buses to monitor
the board power state, temperature, the state of the
fans and the RaToPUS radiation tolerant power supply.
The values are stored in RAM and can be collected by
the remote host. As some sensors are not designed to
be radiation-tolerant, in case of timeout or incoherent
values, the management CPU can power-cycle a sensor.
This allows recovery from any SEE.

• It handles communication through the nanoFIP mez-
zanine. WorldFIP packets can be interpreted as either
a command or user data. The latter are forwarded to
the application CPU through a shared memory. Com-
mands cover management tasks such as controlling the
I2C devices in the crate, performing tests and reading
statistics registers.

• It manages the application CPU. In particular, it can
download an application either from the local flash or
from WorldFIP, and start or stop the application CPU.
As a safety measure, the management CPU cannot mod-
ify the program run by the application CPU while it is
running. The registers in the supervision unit attached
to the application CPU can be read by the management
CPU and reported to the host.

At power-up, the instruction RAM of the management
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CPU is loaded from a flash by a small state machine, and
then the reset line of the CPU is released. A remote software
update is possible because the management CPU can write
to this flash. The program is currently about 1000 lines of C
code, occupying 4 kB in memory.

The second HydRA CPU is dedicated to the user. It has
exclusive access to the I/O lines on the backplane and cannot
be interrupted by the management CPU. Each CPU can be
restarted without affecting the other one. Users can add
peripherals (e.g. I2C or SPI controllers) to the user CPU by
connecting them to its Wishbone bus. The software running
in the user CPU must also be an infinite loop, reacting to data
coming either from the memory shared with the management
CPU, or peripherals on the Wishbone bus.

Verification
The most complex part of HydRA is the home-made

RISC-V core. It was tested using the official RISC-V in-
struction testsuite which exhaustively tests all instructions.
Furthermore, we use the smallest instruction subset, and
we don’t use interrupts. As we mentioned above, we have
two HydRA designs under evaluation. The first one (trip-
licated CPU) doesn’t use exceptions. The second one uses
exceptions only to correct ECC errors in the register file.
In addition to the testsuites, the CPUs have been used and
validated in some previous projects: WRTD ( [5]) and the
White-Rabbit PTP core ( [6]) where the software is quite
large (about 128 kB of instructions) and uses interrupts. We
haven’t found any issue in the uRV core for at least 5 years,
so given the restricted set of features used we have good
confidence in this core.

The I2C and SPI cores are reused from the general-cores
library ( [7]) in the Open Hardware Repository. Thanks to the
experience gathered in many projects, they are considered
validated.

The register map has been automatically generated [8]
and therefore doesn’t require a particular verification.

For simulating the design, we have written a small test-
bench in VHDL. Unfortunately, it is not fully accurate as
we use the flash storage block of the FPGA. We have no
model for this block, and we had to write a limited model
from the documentation. It’s difficult to know how accurate
our model is, but fortunately flash storage is a non-critical
part: it is used only during initialisation to load software
into RAM. To avoid any surprise, we don’t use any HDL
blocks from the vendor: all the gates in the netlist come from
our HDL. In particular, the interface with the flash storage
doesn’t use the standard one provided by the vendor.

The simulation model was not extensively used. The
startup is a little bit slow to simulate, as the software has to be
loaded in the CPUs. In addition, we had access to prototypes
of the system board, so we preferred to do verification on
the real platform. However, if we find an issue, it is always
possible to reproduce a scenario in simulation in order to
have access to all the signals. To be able to simulate the
model with open-source HDL simulators, we used an open-
source synthesis tool to translate the instantiated uRV into

VHDL.
For functional tests, the host program is able to have access

to all devices on the board through WorldFIP. Although the
host program is written in C, it can provide a command line
interface over a socket and we used a Python script to run
the test cases.

Error Injection In addition to functional tests, we
need to run tests for all the features which fight against the
radiation-induced effects. This is different from the func-
tional tests because by default, in a normal environment,
these features are never exercised. A traditional method is
to add error injection features: extra logic which allow cor-
ruption of the main logic. So in each memory, which is in
principle protected by ECC, the developer also has the possi-
bility to write an incorrect ECC. By observing the supervisor
counters, we can check if the error has been corrected (in
case of a single bit error), or has been detected (in case of
double bit error). The detection and correction mechanisms
can be either the scrubber (which scans the whole memory),
or the CPU when it reads or writes the memory. In order to
specifically check the CPU mechanism, we need to disable
the scrubber.

Writing an incorrect ECC to a data memory can only be
done by the CPU attached to that memory. So a specific
application needs to be loaded into the application CPU to
do the tests. As only the management CPU can write into the
instruction memory of the application CPU, it drives the test.
The application CPU has to be on reset to allow changes
of the instruction memory. Corruption of the instruction
memory of the management CPU is done during boot, while
the memory is filled from the flash. A specific boot flag
allows a few selected instructions to be corrupted.

The error injection scheme described above is used for
both variants of the HydRA design. For the first variant, we
are also able to make the CPUs diverge: there is one special
register in the memory map which returns a different value
for each of the triplicated CPUs. Depending on how the
value is used, different types of faults can be injected:

• the address sent to the instruction memory can be dif-
ferent (by executing a conditional jump on the value),

• the address sent to the data memory can be different (by
reading or writing a word at an address which depends
on the value)

• the data written can be different (by writing the value)
• the byte select mask can be different (by addressing a

byte within a given word depending on the value)
For the second design variant (the one with ECC in the

register file), another instruction has been added in order to
be able to write into the ECC bits of the destination register.
This allows us to inject errors in these bits.

Test Results
The total specified ionisation dose for the DI/OT radiation-

tolerant system is 25 Gy per year for a lifetime of 10 years.
The system was first tested in the CERN Co60 facility.

In this environment, the system is continuously working
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Figure 4: Number of corrected errors in RAM as a function
of time.

without any fault but the electronics slowly degrade. During
our tests, the system stopped working at 335 Gy. We then
tightened the design constraint for the maximum operating
frequency to further improve the results.

Then the system was tested in CERN’s CHARM [9] fa-
cility, where a proton beam hits a target, which generates
secondary particles at relatively high energy. The profile
of this indirect radiation over our board is comparable to
the real situation in LHC, where electronic systems are not
directly hit by the beam.

The dose rate in CHARM depends on the position of
the system, the nature of the target and the energy of the
beam. A radiation sensor (RadMon [10]) is placed very
close to the system. The board is remotely powered and
connected through WorldFIP to a host. The host runs a test
script (written in Python) which continuously communicates
with and monitors the system. It reads the values from the
sensors (gathered by scanning the I2C buses), the values
from the supervisor registers and well as some counters
maintained by the software (number of resets, number of
packets, cycle number...) and logs them for offline analysis.
The application CPU runs a simple program which bounces
back the random patterns sent by the host program.

From the logs we can extract graphs like Fig. 4, where
we can clearly see the number of (corrected) single errors
increasing when the beam was on. “iram” in the figure
stands for the instruction RAM, while “dram” is the data
RAM. “se-corr” are errors corrected when the CPU accesses
the memory and “scrub-se” corresponds to errors fixed by
the hardware scrubber. The “scrub-de” counter represents
double errors detected by the scrubber and was always zero
during our tests, indicating that there was no double error
generated. The curves restart from zero when the board
is reset. We can see that the number of single errors is
proportional to the size of the RAM (the instruction RAM is
4 times the size of the data RAM). The scrubbers are able to
scan the whole memory many hundreds of times per second,
so that single errors do not accumulate.

The system continued working correctly until it died of
dose effects at 500 Gy. This is a sign that all SEEs in the

logic part are correctly detected and corrected by the TMR
and other methods described.

OUTLOOK
Some CERN teams have already started to use the radia-

tion tolerant DI/OT system for new developments: WPS –
the Wire Positioning System – and WIC – the Warm magnet
Interlock Controller – validating the basic building blocks
of the kit.

Concerning HydRA, there are some additional features
that could be implemented. The uRV CPU could support
the compressed set of instructions, thus reducing RAM size
for the program, or allowing larger programs. Also, in order
to help during the development phase, it could be possible
to support remote debugging. uRV already supports it, but
it is not yet integrated in HydRA.

Until now, execution speed has not been an issue for users.
The current clock frequency of 40 MHz after TMR required
no special efforts, so it should be possible to increase it. For
the 2 CPUs, we use less than 45 % of the FPGA logic, and
less than 20 % of the RAM.

Finally, it could be interesting to use open-source tools to
implement different TMR schemes, e.g. triplicating also the
combinatorial logic (and maybe monitoring it) to see if it
improves the reliability.
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