
EMBEDDED CONTROLLER SOFTWARE DEVELOPMENT
BEST PRACTICES AT THE NATIONAL IGNITION FACILITY

V. Gopalan, P. K. Singh, V. J. Hernandez, J. Fisher, C. M. Estes, P. Kale, A. Pao, A. Barnes
Lawrence Livermore National Laboratory, Livermore, CA, USA

Abstract
Software development practices such as continuous in-

tegration and continuous delivery (CI/CD) are widely
adopted by the National Ignition Facility (NIF) which
helps to automate the software development, build, test,
and deployment processes. However, using CI/CD in an
embedded controller project poses several challenges due
to the limited computing resources such as processing
power, memory capacity and storage availability in such
systems. This paper will present how CI/CD best practices
were tailored and used to develop and deploy software for
one of the NIF Master Oscillator Room (MOR) embedded
controllers, which is based on custom designed hardware
consisting of a microcontroller and a variety of laser sen-
sors and drivers. The approach included the use of auto-
mated testing frameworks, customized build scripts, simu-
lation environments, and an optimized build and deploy-
ment pipeline, leading to quicker release cycles, improved
quality assurance and quicker defect correction. The paper
will also detail the challenges faced during the develop-
ment and deployment phases and the strategies used to
overcome them. The experience gained with this method-
ology on a pilot project demonstrated that using CI/CD in
embedded controller projects can be challenging, yet fea-
sible with the right tools and strategies, and has the poten-
tial to be scaled and applied to the vast number of embed-
ded controllers in the NIF control system.

INTRODUCTION
Software engineering best practices such as continuous

integration and continuous delivery (CI/CD) [1] have
transformed the development, testing and deployment of
software applications in many domains. Once primarily
used by web and cloud-based applications, these practices
are now being increasingly extended to other areas, such as
in the context of resource constrained embedded systems.
Such systems typically have limited computing capabili-
ties, real-time requirements, and may even lack an operat-
ing system. These practices will undoubtably benefit such
applications as well, given the increased complexity and
faster development cycle demands of such systems, partic-
ularly in applications that involve control and monitoring
systems that demand high reliability, and real-time respon-
siveness.

Embedded controllers used in the National Ignition Fa-
cility (NIF) [2] control systems are a case in point. An "em-
bedded controller" in this context refers to a custom-built
computing device that is designed to perform dedicated
functions within the NIF control system. The controller is
typically enclosed within the machine or equipment and di-
rectly controls all aspects of its operation autonomously

without needing to continuously communicate with other
parts of the control system. However, they can have control
or monitoring interfaces to integrate with the larger control
system when required, while still maintaining autonomy.

These controllers are critical to the functioning of the
overall NIF control system and typically require high reli-
ability, resilience, and performance. This demands that
their development, testing, and deployment procedures be
rigorous and extensive. Incorporating software engineering
best practices can address many of the challenges associ-
ated with these procedures. This will help in automating
these procedures to achieve faster development cycles, en-
hanced quality, and improved system reliability.

However, applying best practices such as CI/CD to em-
bedded controllers presents a unique set of challenges, due
to the hardware-software interactions, real-time require-
ments, safety standards, and the limited computing capa-
bilities. A careful approach is necessary when extending
these practices to embedded controllers.

This paper explores the application of software engineer-
ing best practices to the development and deployment of
embedded controllers used in the NIF control systems, spe-
cifically the controllers used in the Master Oscillator Room
(MOR). It outlines the potential benefits of this approach,
discusses the challenges that need to be addressed, pro-
poses strategies for effectively implementing CI/CD best
practices and presents a case study through a pilot project
designed to validate this strategy.

EMBEDDED CONTROLLERS IN NIF
MASTER OSCILLATOR ROOM (MOR)
The Master Oscillator Room (MOR) [3] at NIF produces

laser pulses from an optical fiber laser, originating with a
few nanojoules and a beam diameter of a few micrometers.
With four distinct oscillators (Fig. 1) corresponding to dif-
ferent beam cones on the target, each oscillator can be set
up independently to generate the low-energy laser pulses.

Figure 1: The NIF master oscillator.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

MO2BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

54

Software

Software Best Practices

The equipment in the MOR sets the stage for these
pulses to be subsequently amplified several billion times
before they are channeled into NIF's main laser amplifiers.
These pulses undergo multiple stages of splitting and am-
plification using industry-standard fiber tools, resulting in
48 distinct pulses each feeding a ‘quad’ of laser beams,
eventually leading to the carefully aligned and timed 192
beamlines feeding focused energy to the target.

The MOR employs over 100 embedded controllers (out
of approximately 1000 overall in NIF controls) to achieve
its critical operating functions. These controllers consist of
optical amplifiers that control output energy and polariza-
tion, failsafe switches, phase modulators, RF oscillators
and RF switches. These controllers also make use of a va-
riety of hardware technologies for the control computer,
peripheral interfaces, and local user interfaces.

Embedded Controller – Generic Architecture
When discussing the challenges faced in embedded con-

troller development, it is helpful to define a "generic" struc-
ture of the embedded controller. This serves as a common
base architecture that represents the key aspects of all em-
bedded controllers. While embedded controllers can utilize
various technologies depending on their function, such as
Digital Signal Processor (DSP), Field-programmable gate
array (FPGA) etc., this paper focuses on microcontroller-
based systems, which are extensively used in the NIF
MOR.

Figure 2: Generic embedded controller.

As shown in Fig. 2, at the core of the embedded control-
ler is a microcontroller-based controller board responsible
for managing the primary logic for the control functions.
This central unit interfaces with and controls a variety of
components: optical elements that channel the laser, a net-
work interface for connectivity to the broader systems, and
a serial/USB interface for direct, point-to-point communi-
cations to locally connected peripherals.

Complementing the controller board, a dedicated moth-
erboard acts as an intermediary, bridging the controller
board to hardware components such as laser diodes. The
motherboard incorporates data translation and hardware in-
terfacing and includes features such as signal conditioning,
analog-to-digital (ADC) and digital-to-analog (DAC) con-
verters. A display/touchscreen offers a local interface, al-
lowing for local monitoring, adjustments, and diagnostics.

Enclosing all these components is a robust enclosure, en-
suring protection of the internal components from environ-
mental factors while also protecting the users from internal
hazards such as high voltages and laser emissions.

Embedded Controller – Operational Ecosystem

Figure 3: Operational ecosystem.

The operational ecosystem of the embedded controller
(Fig. 3) consists of an interconnected framework, designed
to ensure full operational control and autonomy. At its core
lies the embedded controller device, such as an MOR Dual
Fiber Amplifier, functioning as the central hub of the eco-
system. While this embedded controller functions largely
independently, it has a peripheral relationship with the NIF
distributed control system through an optional network in-
terface for control/monitor interactions between the con-
troller and the larger control system.

The controller's operational environment also consists of
a display/touchscreen interface for direct user interactions.
A dedicated serial/USB interface supports its programming
and software deployment. The controller interfaces with
advanced logging systems like Splunk for event logging
and deriving performance insights. Since the controller
does not typically have file system capabilities, data log-
ging is performed by external applications which read
trend data from the controller and write to the network
drives. The environment may also contain external control
and monitoring GUI applications for enhanced operational
interface. This design ensures that the embedded controller
can operate without disruption, even when the larger con-
trol system or interface to it experiences downtime, ensur-
ing the ecosystem's resilience and autonomy.

EMBEDDED CONTROLLER SOFTWARE
ENGINEERING CHALLENGES

Complex Hardware and Software Ecosystem
While various embedded controller solutions were used

in the past, designs based on AVR [4] and PIC [5] micro-
controllers have emerged as the platform of choice, offer-
ing a range of solutions that address the varying complex-
ities and functionalities of MOR embedded controllers.

AVR and PIC microcontrollers, developed by Microchip
Technology, are widely used in MOR embedded controller

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

Software

Software Best Practices

MO2BCO06

55

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

applications. The AVR microcontrollers were found to be
suitable for many embedded controller applications owing
to their high performance and low power consumption. On
the other hand, PIC microcontrollers offer a good balance
of performance and a range of peripheral interface options,
proving to be a good fit for various embedded controller
applications where robust peripheral support is a priority.

Figure 4: Development tools ecosystem complexity.

These microcontroller platforms, however, necessitate
usage of a broad range of programming tools (Fig. 4) [6].
While each tool is associated with its target platform, this
tool ecosystem demands that developers navigate multiple
learning curves and setup processes.

Developers are also faced with an extensive ecosystem
of test and diagnostic tools. This includes hardware diag-
nostic tools like oscilloscopes to software utilities for sim-
ulation and debugging. A fundamental task such as deploy-
ing software into the microcontrollers comes with its
unique challenges. Different microcontrollers often come
with specific flash programmers, which connect to the mi-
crocontroller using a variety of interfaces including JTAG,
serial, among others. This vast set of tools and interfaces,
although essential, can present challenges in compatibility,
version control, and developer expertise.

Low Memory and Computational Constraints
Embedded controllers, which are fundamentally based

on microcontrollers, inherently contain a low amount of
memory, sometimes limited to just a few kilobytes. This
constraint creates a significant challenge when designing
and developing code in high level programming languages
such as C++. Developers must carefully architect their
code to be lean and efficient, minimizing computational
overhead wherever possible. The generally accepted best
practice of prioritizing clarity over conciseness to ensure
that the code is maintainable may not apply directly in the
context of embedded controllers, where the priority shifts
to writing concise code that makes optimal use of the avail-
able resources, even if it means sacrificing some level of
readability.

Hardware-Software Interactions
Embedded controllers are characterized by their direct

hardware-software interactions. This introduces a signifi-
cant challenge in setting up test environments in general,
and automated continuous test systems in particular. The
hardware and software in these systems are closely coupled
and hence changes in software or hardware can have a di-
rect impact on each other. Testing embedded controller
software in isolation from associated hardware can lead to
incomplete or incorrect conclusions. As a result, traditional
automated test processes (e.g., using simulation tech-
niques), which were designed primarily for software, may
not be sufficient for embedded controllers.

Real-Time Requirements
Embedded controllers often operate under real-time con-

straints, where tasks must be completed within a specified
time limit. Correspondingly, the test and validation must be
designed to not only ensure functional correctness but also
guarantee that the timing specifications are met. This re-
quires specialized testing tools and techniques, which adds
complexity to the testing process.

Siloed Development Environments
Different microcontrollers, like PIC and AVR, require

their own unique ecosystems, making the creation of a uni-
fied development process difficult. This restricts code port-
ability between these platforms and necessitates developer
expertise in multiple platforms which will potentially slow
down the development cycle.

Configuration Management
Embedded controllers typically store data on the micro-

controller's EEPROM (a type of persistent storage), which
is quite different from how configuration is stored for other
NIF control subsystems (generally in relational databases).
This presents a challenge in terms of establishing configu-
ration management practices for such data. The EEPROM
lacks the management functionalities found in database
systems, thereby making processes related to version con-
trol, integrity checks, schema upgrades, and data reverting
very challenging.

Rollback Requirements
The necessity for a smooth and swift rollback mecha-

nism is important for uninterrupted operations in a 24x7
facility like NIF. While other NIF subsystems typically im-
plement such processes already, incorporating it in embed-
ded controllers presents a set of unique challenges. This is
because the software and configuration data reside in the
microcontroller’s internal flash memory and is accessed
through interfaces like serial ports or other specialized pro-
gramming interfaces. The use of such interfaces and the as-
sociated procedures cost operational time, and the com-
plexity of hardware/software configuration steps to
achieve rollbacks may involve manual steps and therefore
can increase the potential for errors.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

MO2BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

56

Software

Software Best Practices

BEST PRACTICES STRATEGY
FOR EMBEDDED CONTROLLERS

Utilizing Containers to Encapsulate Complex
Development Tools Ecosystem

Containers are software packages that encapsulate both
software modules and their necessary dependencies, allow-
ing them to execute as isolated entities in any host operat-
ing system environment. These containers, hence, can be
used to encapsulate all tools, software, compilers, static
checkers, and test execution environments specific to each
platform (like the PIC or AVR) into self-contained environ-
ments. This encapsulation also facilitates the versioning of
specific environment configuration, thereby enhancing the
reproducibility and consistency of development work-
flows. Most importantly, once the containers are created,
these containers can be made part of a development process
flow for automating build, test, and deploy tasks.

A Streamlined Software Development Process
based on CI/CD Best Practices

A CI/CD pipeline is an automated software development
workflow that facilitates the continuous integration of code
changes and the rapid deployment of these changes to the
target environments. The containerized toolchains, such as
those created for AVR/PIC build environments, can be used
to construct the components for a CI/CD pipeline for the
embedded controller development. Utilizing DevOps plat-
forms, these containers can then be interconnected to cre-
ate an automated flow from code integration to deploy-
ment.

Despite the potentially differing contents within each
container per hardware architecture, they still facilitate
standardization of the high-level processes in the CI/CD
pipeline. This means that regardless of the underlying plat-
form, the pipeline can maintain a uniform process struc-
ture, enabling a common development and deployment cy-
cle for different types of embedded controllers.

It is important to note that in the domain of NIF controls
software, the Continuous Delivery (CD) stage does not im-
ply a direct delivery to the production environment. Given
the high stakes involved, the CD process is structured to
deploy to offline test environments, where comprehensive
tests can be executed to validate the system's readiness for
production. Once thoroughly validated, the build can then
be manually scheduled for production deployment. This
helps in maintaining a balanced mix of automation and
manual control, leading to a reliable and efficient deploy-
ment process for embedded controllers.

Adopting Open-Source Components
Adopting open-source components and tools within the

containers instead of using manufacturer-provided libraries
(which are typically GUI-based and compatible only with
Windows platforms), allows easy integration in Linux
based containers and allows the CI/CD tools to benefit
from future community-driven improvements.

Coding Practices Tailored for Low Memory,
Computationally Constrained Systems

Adopting specialized coding practices becomes essential
to overcome the challenges posed by low memory and
computational constraints in microcontroller environ-
ments. This involves methods such as avoidance of dy-
namic memory allocation and strategies to minimize func-
tion call depth, thus conserving memory and improving
code execution speed.

Simulation
Simulation involves creating software models to repli-

cate real-world hardware. In the context of embedded con-
trollers, the functionalities and behaviors of the hardware
layer can be replaced with a software simulation to evalu-
ate the system in various scenarios without the necessity
for actual hardware components. This allows for continu-
ous testing and validation at different stages of the devel-
opment cycle while significantly reducing the time and re-
sources required for hardware and environment setup. In
addition, the integration of simulators into CI/CD pipelines
allows quicker iterations, enabling developers to promptly
identify and address defects, ultimately leading to a more
reliable and high-quality product.

Hardware-in-the-Loop (HIL) Testing
In addition to simulation, the CI/CD pipeline must in-

clude tests on real hardware, to effectively address the chal-
lenges associated with automated hardware-software inte-
gration and real-time testing in embedded controller envi-
ronments. This approach, commonly referred to as Hard-
ware-in-the-Loop (HIL) testing, enables developers to val-
idate the system’s performance and behavior in real, pro-
duction-like environments, allowing adjustments and cor-
rections before production deployments.

PILOT PROJECT: MOR DUAL FIBER
AMPLIFIER EMBEDDED CONTROLLER

The MOR Dual Fiber Amplifier (DUAL-AMP) is a so-
phisticated optical device that performs precise control of
amplification and output optical energy through closed-
loop control of the pump diode current and polarization.
Additionally, DUAL-AMP offers a touchscreen interface
where operators can control and monitor various parame-
ters including input and output energy for amps, pump di-
ode currents, and the output power for pump diodes. The
amplifier supports remote configuration and provides an
interface for setting calibration values and limits through
an external program via an Ethernet connection.

The DUAL-AMP amplifier’s ecosystem (Fig. 5) consists
of three distinct software environments. The first is for the
AVR microcontroller which forms the core of the embed-
ded controller, the second environment for the touchscreen
interface, and the third for remote GUI applications. The
deployment process varies across these environments, in-
volving USB/serial updates for controller software, flash
memory (SD) card updates for touchscreen software, and
network disk hosting for the remote apps.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

Software

Software Best Practices

MO2BCO06

57

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 5: DUAL-AMP ecosystem.

This setup represents the conventional complexity and
challenges encountered in embedded controller develop-
ment. Without the implementation of software engineering
principles and CI/CD processes, the development and de-
ployment make use of these multiple siloed environments
without a centralized source control, versioning mecha-
nism and automation. This leads to inefficiencies and inte-
gration challenges.

The pilot project was structured to incorporate and vali-
date the best practices strategies discussed in the preceding
sections, focusing on the development and deployment of
DUAL-AMP’s software components.

CI/CD Pipeline Construction
Building a robust CI/CD pipeline in the context of mi-

crocontroller-based systems necessitates a careful design
and integration of various steps, including version control,
static analysis, unit tests, integration tests, simulation, HIL
tests and deployment.

…..

Figure 6: DUAL-AMP CI/CD pipeline.

GitLab [7] was used as the DevOps platform, serving as
the orchestrator for the entire CI/CD pipeline (Fig. 6). A
key aspect of the project was the creation of Docker [8]
containers as part of the CI/CD pipeline, specified using
the container configuration (Dockerfile) to encapsulate all
the essential tools and environments required for the AVR
platform. This container is utilized throughout all phases of

the process flow, offering a consistent environment where
each pipeline step is executed.

The development process implemented in the CI/CD
pipeline starts with source control using Git [9] version
control system that ensures traceability and management of
the software components and container configuration.
Build tools using avr-gcc [10] perform the compile step,
followed by static analysis using cppcheck [11] and unit
tests using Google Test [12] further enhance the quality by
identifying potential issues at the early stages. Integration
tests, based on simulations, validate the integrated func-
tioning of the different modules. The integration tests made
use of a Python-based tester which interfaced with the em-
bedded controller through a UDP based command/status
interface. This interface is used both for actual command
and control as well as integration testing. Subsequently, the
HIL step rigorously tests the real-time interactions between
hardware and software components on an offline platform,
and finally the validated software image is deployed to the
package repositories.

A modification in the source code or a manual trigger
initiates the activation of the CI/CD pipeline. This auto-
mated process runs the full build and test sequence without
requiring additional effort from the developer, thereby
providing near-instant feedback on the changes made.

Enhancing CI/CD Pipeline Efficiency through
Code Modularity

Modularity - the process of partitioning the software into
distinct, independent units – enables parallel development
and testing, and results in a clean, organized codebase.
Modularity is also essential for robust Continuous Integra-
tion/Continuous Delivery (CI/CD) pipelines. The modular-
ized implementation of the DUAL-AMP software (Fig. 7)
allows for comprehensive unit testing, where each func-
tional unit can be tested in isolation, thereby promoting
early bug detection and targeted debugging.

Figure 7: DUAL-AMP software stack.

Another strategy in modular development involves the
specification of a Hardware Abstraction Layer (HAL). The
HAL serves as a buffer layer between the hardware com-
ponents of the system and the software, bringing ease of
portability and promoting separation of concerns. This
means that software components can be developed

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

MO2BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

58

Software

Software Best Practices

independently of the specific hardware details, thus en-
hancing code reusability across different microcontroller
platforms.

Optimized Coding Practices for Resource Con-
straints

The project adopted coding practices designed for opti-
mized resource usage to address the challenges presented
by the AVR microcontroller's limited memory and compu-
tational resources. This involved favoring static or stack
memory allocation that ensures predictable memory usage
and avoiding or reducing dynamic memory allocations that
can potentially lead to memory fragmentation. Reducing
function call depth, by avoiding deeply nested function
calls, prevented stack overflows, and facilitated faster code
execution, optimizing the limited computational resources
available. In addition, utilizing data types defined in
<stdint.h> used by C/C++ environments, enabled code
portability across different platforms, helping in maintain-
ing consistency in data type sizes.

HIL Testing Setup
The HIL test setup (Fig. 8) consists of a dedicated De-

ployment and Test Server that interfaces directly with the
embedded controller through a serial/USB connection. The
GitLab pipeline job for HIL is associated with a GitLab
Runner [13] hosted on the deployment server, responsible
for executing the HIL job using the Executor.

Figure 8: HIL Testing.

As the pipeline runs its sequence of jobs, the HIL job
triggers deployment of the necessary software image into
the controller via the serial/USB interface, carried out
through the downloader/uploader executor scripts associ-
ated with the runner. Following this deployment, a series
of automated test scripts are run, evaluating the controller's
functionalities under various test configurations. The re-
sults of these evaluations are then reported back into the
GitLab pipeline, allowing the pipeline to report successful
completion or failure of the HIL phase within the pipeline.

Complete Build and Release Cycle
After the CI/CD phase, the release undergoes a rigorous

quality assurance (QA) evaluation (Fig. 9), where it is sub-
jected to manual testing in an environment that closely re-
sembles the production setup. Initially, configuration data
is applied using a config tool, which is subsequently fol-
lowed by the deployment of the actual software release.
The production deployment employs a similar 2-step
method, starting with the application of configuration data
and then the software release deployment. This configura-
tion and software update sequence also ensures a straight-
forward revert strategy, where reverting to a previous ver-
sion involves following the same 2 steps but using a previ-
ous good release package.

Figure 9: Build and release process.

Config Tool This tool manages updates to the
EEPROM map and its contents, facilitating upgrades and
providing options to revert changes when necessary. This
procedure implements a controlled approach to EEPROM
configuration management, ensuring the integrity and con-
sistency of data during software updates and configuration
data modifications.

RESULTS AND LESSONS LEARNED
The pilot project successfully implemented a complete

CI/CD pipeline for an MOR DUAL-AMP embedded con-
troller using software best practices spanning across the en-
tire development and deployment cycle, resulting in the
creation of a well-defined process of designing, testing,
and deploying embedded controllers. As the project navi-
gated through this development process, it collected valu-
able learnings, and this section describes some of the les-
sons learned during the pilot project.

Modularization-Performance Trade-off
Modularization, although important for maintaining or-

ganized and manageable codebases, can potentially incur a
cost in terms of runtime speed in systems such as the em-
bedded controllers, due to limited memory and processing
power. While the project implemented various techniques
to optimize the utilization of limited memory and compu-
tational resources, it became evident that additional en-
hancements and refactoring were required to satisfy the la-
tency requirements of the system. A crucial balance had to

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

Software

Software Best Practices

MO2BCO06

59

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

be struck between optimizing runtime performance and the
level of modularization by optimizing function call over-
heads, data transfer overheads, initialization costs, memory
fragmentation, and layers of indirection in the code.

Increased Initial Time Investment
Implementing a CI/CD pipeline for embedded control-

lers demands a considerable initial time investment. This
includes extensive scripting and configuring for automa-
tion, establishing test environments which replicate the
production setup, fine-tuning the pipeline for optimal per-
formance and developing custom solutions for HIL testing.
However, this initial increased investment will lead to a
more efficient, and responsive development process in the
long run.

FUTURE DIRECTIONS
The MOR DUAL-AMP pilot project provided several

insights and lessons throughout the planning, implementa-
tion, and testing phases. As the project moves towards full
productization and wider deployment of these approaches
in NIF, plans for future approaches and enhancements were
proposed, a few of which are described below.

Integration of Direct Network Update
The deployment of software to the Hardware-in-the-

Loop (HIL) test systems from the CI/CD pipeline made use
of a dedicated intermediary network connected server. A
direct over-the-network update to the embedded controller
(without the intermediary server and serial/USB interfaces)
will simplify deployment and reduce the infrastructure
complexity. The plan, therefore, is to transition to a direct
network update mechanism over Ethernet to achieve the
above goals, but this would require updated bootloaders in
the controller and a different server infrastructure to serve
the deployable software images. However, this upgrade
might not be feasible for all embedded controllers, partic-
ularly those with extremely limited memory and computa-
tional capabilities, where implementing network capability
may not be realistic. Therefore, in practice, a mixed solu-
tion employing both the existing and network update
mechanisms is deemed to be the best long-term solution.

Enhancing Hardware-in-the-Loop (HIL) Testing
The current HIL test setup, although quite extensive in

coverage, operates within a limited scope in terms of exer-
cising various input stimulations, such as optical feeds, at
levels comparable to production environments. To bridge
this gap, plans are in place to integrate external hardware
configurations capable of generating additional input con-
ditions, thereby creating a more production-like test setup.

Harmonization of Hardware Platforms
Plans are in place for harmonizing embedded controller

hardware platforms to enable a more unified and simplified
development ecosystem. By focusing on a singular, or
more realistically, a reduced set of platforms, the plan is to
eliminate the complexities arising from the management of
multiple disparate systems. This strategy will help in

simplifying development cycles, enhance supply chain ef-
ficiency, address hardware obsolescence, and thereby be-
coming a vital part of the overarching NIF sustainment in-
itiative [14].

CONCLUSION
As embedded controllers continue to perform critical

functions in the NIF control system and grow in complex-
ity, the necessity of robust and efficient development meth-
odologies becomes increasingly critical. In this context, the
application of software engineering best practices into em-
bedded controllers’ development represents a significant
step forward, ensuring a more agile, reliable, and effective
process for developing, testing, and deploying NIF embed-
ded controllers.

ACKNOWLEDGEMENTS
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. Docu-
ment number: LLNL-CONF-854611.

REFERENCES
[1] J. Humble and D. Farley, Continuous Delivery: Reliable

Software Releases through Build, Test, and Deployment Au-
tomation, Addison-Wesley, 2010.

[2] M. L. Spaeth et al., “Description of the NIF Laser”, Fusion
Sci, Technol., vol. 69, 2016. doi:10.13182/FST15-144

[3] P. J. Wisoff et al., “NIF injection laser system”, Proc. SPIE
vol. 5341, of Lasers Appl. Sci. Eng., 2004, San Jose, CA,
USA. doi:10.1117/12.538466

[4] Microchip AVR microcontrollers, https://www.micro-
chip.com/en-us/products/microcontrollers-
and-microprocessors/8-bit-mcus/avr-mcus

[5] Microchip PIC microcontrollers, https://www.micro-
chip.com/en-us/products/microcontrollers-
and-microprocessors/8-bit-mcus/pic-mcus

[6] Microchip Development Tools and Software,
https://www.microchip.com/en-us/tools-re-
sources

[7] GitLab, https://gitlab.com
[8] Docker, https://www.docker.com
[9] Git, https://git-scm.com

[10] avr-gcc – GCC Wiki,
https://gcc.gnu.org/wiki/avr-gcc

[11] Cppcheck, https://cppcheck.sourceforge.io
[12] GoogleTest, http://google.github.io/googletest
[13] GitLab Runner, https://docs.gitlab.com/runner/
[14] M. Fedorov et al., “Status of the National Ignition Facility

(NIF) Integrated Computer Control and Information Sys-
tems”, in Proc. ICALEPCS'21, Shanghai, China, Oct. 2021,
pp. 9-13.
doi:10.18429/JACoW-ICALEPCS2021-MOAL02

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06

MO2BCO06

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

60

Software

Software Best Practices

