
APPLYING STANDARDISED SOFTWARE ARCHITECTURAL CONCEPTS
TO DESIGN ROBUST AND ADAPTABLE PLC SOLUTIONS ∗

S. T. Huynh† , B. Baranasic, M. Bueno, T. Freyermuth, P. Gessler, N. Jardón Bueno, N. Mashayekh,
J. Tolkiehn, L. Zanellatto, European X-Ray Free-Electron Laser, Schenefeld, Germany

Abstract
Between evolving requirements, additional feature re-

quests and urgent maintenance tasks, the Programmable
Logic Controllers (PLC) at the European X-Ray Free Elec-
tron Laser Facility (EuXFEL) have become subjected to an
array of demands. As the maintainability effort towards the
existing systems peak, the requirement for a sustainable so-
lution become an ever pressing concern. Ultimately, in order
to provide a PLC code base which can easily be supported
and adapted to, a reworking was required from the ground
up in the form of a new suite of libraries and tools. Through
this, it was possible to bring standardised software principles
into PLC design and development, conjunctively offering an
interface into the existing code base for ongoing support of
legacy code.

The set of libraries are developed by incorporating soft-
ware engineering principles and design patterns in test driven
development within a layered architecture. In defining clear
interfaces across all the architectural layers - from hardware,
to the software representation of hardware, and clusters of
software devices, the complexity of PLC development de-
creases down into modular blocks of unit tested code. Regu-
lar tasks such as the addition of features, modifications or
process control can easily be performed due to the adaptabil-
ity, flexibility and modularity of the core PLC code base.

INTRODUCTION
Over the decades, Programmable Logic Controllers (PLC)

have been programmed and the world in which it exists, has
also evolved into the standard that is known of today as the
IEC 61131-3 [1] standard. With the increase in memory
and the greater integration of Structured Text (ST) [2] PLCs
have started to shift from an electrical hardwired concept to
all that is offered within a software programming language.
This cross discipline has opened up a powerful feature set
which is often underutilised, and provides PLCs with the
opportunity to integrate core software principles into their
code base.

In the process of redeveloping the PLC code at the Euro-
pean X-Ray Free Electron Laser Facility (EuXFEL), the PLC
developers are committed to developing a code base which
is designed with thought and care, bringing into the design
many of the software practices which are often embodied in
large software projects, whilst taking into consideration the
needs and functions of the PLC as the facility expands and

† sylvia.huynh@xfel.eu

refines its needs. Taken into consideration is the continual
support and maintenance of the current legacy code base,
and its future integration.

TECHNICAL DEBT
When juggling between time constraints and numerous

feature requests, it would not be uncommon for code to
be added to an existing code base in a haphazard manner,
without thorough testing. Whilst this approach can seem
to work, the consequences will inevitably catch up with the
developers.

This was precisely the situation that the PLC developers
at EuXFEL found themselves in: more time was being ded-
icated towards maintenance and resolving existing issues
within the existing code base, than developing additional
functionality. Within a scientific environment where exper-
iments are in a constant state of flux, the demands on the
PLC to be agile and adaptable, but also reliable was also
further stressed.

It became customary to develop new patches to get around
limitations, and the task of maintaining the array of existing
tools became unmanageable. This is especially noted where
core libraries and functions that were heavily relied upon
within various programming languages, became deprecated
or superseded.

Due to the amassed technical debt which accumulated
over several years, the tipping point for redevelopment was
reached. As such, a complete redevelopment was required
for the PLC code base.

KEY REQUIREMENTS
As with any major software project, the first step was

the development of a Software Requirements Specification
(SRS). As this paper will focus on the non-functional de-
sign aspects, the key outcomes of the SRS which ultimately
defined the final PLC design, are detailed below.

Architectural Decision Records
One of the challenges in maintaining legacy code is un-

derstanding what historical decisions were made and their
reasoning. Unfortunately, this is often neither obvious nor
something that can be garnered with going through the exist-
ing code. To be able to refactor, extend or at times, remove
redundant code can be challenging without this information.

Knowing this will allow one to refine or edit existing work
with an awareness of the original intention. Without this,
code modification can result in unintended consequences,
especially in a code base without a clean architecture. This

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

MO2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

40

Software

Software Best Practices



can easily be overcome with up-to-date documentation of
all Architectural Decision Records (ADRs) [3].

ADRs not only record the final decision, but more im-
portantly, the justification, options considered and known
constraints and any assumptions that were made during deci-
sion making. A common ADR outline can be found below:

• Topic: The design aspect which is being addressed.
Eg.’Array Bounds Declaration’

• Issue description: A detailed explanation of why this
issue exists and where it would be used/implemented

• Decision: The final and succinct decision that was
made. This should not be open to interpretation.

• Status: Current status of the decision. The following
are used at the EuXFEL: Proposed, Accepted, Rejected,
Superseded, Deprecated.

• Assumptions: The underlying assumptions which the
decision is being made upon. This can be related to the
decision-cost, constraints, technology etc. These envi-
ronmental factors can impact the decision, and under a
different set of circumstances, may result in a different
decision being made.

• Constraints: Additional constraints that are imposed
upon the issue

• Positions: A list of positions which were considered
during the decision making process. This should cap-
ture a list of alternatives, why they were ruled out, what
advantages they may have offered or subsequent issues
they added.

• Justification: The reason that a particular position was
selected. This is often equally, if not more important
that the decision itself, as it will help others understand
the rationalisation of the decision.

• Implications: All decisions have implications. This
should outline the foreseeable implications of the de-
cisions and indicates how well thought-out a decision
was made.

• Related resources or decisions: Decisions are often
not made in isolation, and can impact previous deci-
sions made, or put into action future decisions. Any
associated resources and ADRs can be listed here to
aid referencing.

This enables all developers current and future, to under-
stand why the code was developed in a particular way, and
how the decision came to be, eliminating any unnecessary
guesswork. When appropriate, ADRs can also act in place
of discussion minutes, and product documentation.

Layered Architecture Pattern
Each layer within a layered architecture pattern [4] has a

distinct and well defined function. This ensures that changes
within one layer will not impact another. This provides a
clear boundary of scope for the responsibilities within each
layer, making it easier to adapt and scale. It can also aid
development by limiting the problem at hand.

When we think of passing signals from hardware to soft-
ware, we naturally consider processing the signal in steps.
For example: the hardware raw units, the corresponding

PLC bits, to the scientific/user unit, to a meaningful value
within a component, and finally, to a value which can be
interpreted by the Supervisory Control and Data Acquisition
(SCADA) system. This stepped approach as seen in Fig. 1
naturally adapts itself to a multi-layered pattern within the
software architecture. Many common software systems such
as UNIX or any communication protocol also implement
such a architecture.

Figure 1: PLC architectural layers.

A key benefit of a layered approach lies within code en-
tanglement. As your code base grows, it naturally becomes
more intertwined. With a layered architecture pattern, the
boundary of each layer will intrinsically limit this. The lay-
ers of the PLC Library will be further elaborated upon and
explored within the PLC Architecture Overview section.

Interface Concept
To ensure each layer within the code base can continue

to interact with each other while being heavily refactored or
edited, an interface is required.

An interface defines the expected data structure, type and
value from which all information is to be formatted before it
can pass between the various layers. The concept of inter-
faces [5] is one of the most critical in software engineering. It
ensures that the various code functions, classes and modules
can be interacted with in an expected manner. It allows the
user to know what data they can access, whilst the technical
details regarding the implementation is hidden.

An example of an interface for a voltage derived signal
can be seen in Fig. 2. Here, it is possible to see the list of
available features which can be accessed by all other parts
of the code base.

Figure 2: Voltage interface.

In having clear and well defined interfaces, the function of

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

Software

Software Best Practices

MO2BCO04

41

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



the interface can be completely independent to how the piece
of information is used. The interface acts as a guarantee
to the accessing method and implementer, of what can be
expected and what is to be delivered. It can be treated as
a contract between provider and consumer of information,
which allows both parties to program against this contract
individually without knowing any implementation details of
the other side.

Modularity
As PLCs are used to integrate in hardware devices for

remote control, the high repetition of code leads to the re-
quirement for modularity. For example, if a piece of hard-
ware was to be integrated into the PLC, the device will have
similar properties such as an error, a predominate value of
note, and configurable aspects; not unlike other hardware
devices. The error handling, configuration methods or value
scaling can all be treated as individual modules, which can
then easily be replicated across all the various devices.

Modular code ensures that each code block is limited to
providing a single function. This results in smaller code
blocks, which in turn make it easier to read, diagnose and to
also reuse. Within the TwinCAT environment, these modules
are implemented as objects or Program Organization Unit
(POU). As each POU or object will have a similar interface,
take for example, Error Handling; the implementation will
then be encapsulated and specific to each hardware device
as required. In having smaller code blocks dedicated to a
single feature, the code also makes itself easier to test and
reason about.

Test Driven Development
A novel concept referred to as Test Driven Development

(TDD) [6] within software development, outlines that code
should only be written to ensure a previously written test suc-
ceeds. Whilst this can be seen as being counter-intuitive, this
ensures that a method and interface has been well thought
out before any production coding has even begun. Only once
a test has been developed can any code be written. The code
base is now being driven by failing test cases, rather than
tests being developed to reflect the written code. The TDD
process can be seen in more detail in Fig. 3 with correspond-
ing tests as seen in Fig. 4.

A key advantage to this approach is the knowledge that
comes with a code base with a high test coverage, where any
function or method will have an existing test case. Especially
so as code coverage can not be measured within TwinCAT.
This provides some level of security and reliability when all
tests succeed during a major refactoring.

TcUnit [7] provides a library which can easily be inte-
grated into the TwinCAT environment. Within each library
developed, a program is created specifically to run the unit
tests, ensuring a functional and error free code base. An-
other major benefit of using TcUnit lies in its ability to be
added into a continuous integration/continuous development
and deployment (CI/CD) pipeline, further enhancing code
quality and reliability.

Figure 3: Test Driven Development process.

Figure 4: Test Driven Development example.

Support of Legacy Code
Given the amount of work which has already gone into

developing, testing and commissioning of the various hard-
ware components within existing code base, it would be
counter productive to completely disregard what has been
done thus far. In an attempt to salvage this effort, one of the
key requirements would be to provide a way to adapt the
legacy code into the new architecture.

Whilst a lot of the design discussion revolved around what
can be done to rectify some of the key restrictions or how
it can be improved upon, a fair amount of effort was put
into ensuring that it was possible to provide ongoing and
continual support for the legacy code base within the new
architecture.

Due to a layered architecture pattern, the integration of
the legacy support can constitute its own module along side
the device abstraction layer in a straight forward and simple
manner. It only requires a relatively simple adapter to replace
the old direct hardware linking to adopt old devices to the
new TcHAL.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

MO2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

42

Software

Software Best Practices



PLC DEVELOPER: AN APPROACH
Software principals and patterns are often ideal, and are

wildly utilised within major software projects. An overview
of the current PLC code base at the EuXFEL is detailed
below, along with the application and implementation of
the software design patterns and concepts previously men-
tioned. Supporting software design concepts which provide
a backbone to many of the software objects are also detailed.

PLC Architecture Overview
The PLC code base comprises of a collection of libraries,

which together form the TcZookeeper suite [8], along side
with some tools integrated into TwinCAT (VisualStudio) to
assist using these libraries. An overview of the TcZookeeper
suite can be seen in Fig. 1.

A single architectural layer can be made up of one or sev-
eral libraries, where each library will be responsible for a
single domain with a clear separation of concern. It was
decided to keep each architectural layer as an independent
library or set of libraries to enforce a clear boundary, but also
to aid deployment. As PLC projects are generated or created,
they will reference the necessary TcZookeeper libraries. To
minimize the requirement of PLC updates, the libraries are
all abstracted according to their functional layer and only
updated within a PLC project when required. Additionally, a
library can also be easily added or swapped out, without im-
pacting an existing references. For example, a library on the
communication layer may be responsible for providing the
OPC Unified Architecture (OPC UA) protocol, and another
library also within the communication layer which is catered
to a different protocol. Both can exist simultaneously, or
independently as defined by the connecting SCADA system.

TcHAL The lowest layer within the TcZookeeper as
seen in Fig. 5 is the TwinCAT Hardware Abstraction Layer
(TcHAL). The fieldbus hardware configuration is performed
at this level, and each fieldbus device or EtherCAT terminal
is encapsulated within its own POU. Data read from the
EtherCAT terminal and devices are converted into meaning-
ful International System of Units (SI) where possible.

TcDAL The TwinCAT Device Abstraction Layer (Tc-
DAL) is the representation of a piece of hardware that is
to be controlled and integrated within TwinCAT as seen in
Fig. 6. It is aimed for this layer to represent basic devices
such as valves, pumps, pressure gauges, motors and the like.

Essentially, the functionality and how the various device
signals are to be interacted with, are all encapsulated within
the various objects or POUs of this library. This detaches
itself entirely from the type of signal itself. Take for ex-
ample, a pressure gauge. The gauge value consists of just
an analogue value in mbar. At this level, it is irrelevant if
the value was originally derived from a voltage or current
source, that should have been handled within the TcHAL.

TcCAL As the facility consists of multiple beamlines,
there will be repetition around some beamline components,

such as a vacuum section as seen in Fig. 7. A vacuum section
will always constitutes of the same key parts - a collection of
pumps, pressure gauges and valves. The functioning of this
component on a higher level will also be similar - A set of
valves and pumps will close, open, turn on or off to maintain
a predefined pressure during a venting or evacuating process.

The logic and control process for a more complex device
which is comprised of multiple low level devices taken from
the preceding TcDAL layer, is defined within this library.

Communication This library deals with the communi-
cation protocol in order to pass data between the PLC and the
SCADA system. By isolating the communication protocol
into a single layer as seen in Fig. 8, the potential to eas-
ily interchange or apply multiple communication protocols
simultaneously becomes feasible.

This ensures that the behavioural aspects of a hardware
device integration are entirely encapsulated from all of the
code dealing with the communication. Whilst this may seem
obvious, this was a key bottleneck in the previous iterations
of the PLC framework at the EuXFEL.

Pelican The Pelican is the library which is responsible
for all of the interface definitions and the interface manager.
This layer encapsulates all the available interfaces within a
single libraries across the entire TcZookeeper. For any layer
to interact or pass information to another layer, it must use
one of the available interfaces provided by the Pelican.

Finite State Machines
Data Structure In order to keep the code as modular

as possible, an object will contain device information within
its interface, which is created by a data structure with the
properties as shown in Fig. 9. This will be applied to every
object, whether it be a valve or a fieldbus terminal etc.

Every device will contain the Configuration, Error and
Operating states, in addition to any device specific states as
required which is known as its Process state.

FSM Implementation Each device will then imple-
ment a Finite State Machines (FSM). Following a version of
the [9] state pattern with some adaptations to PLC specific
constraints. An example of this can be seen in Fig. 10.

The main trade off comes down to complexity versus con-
sistency. Simple devices will be taxed with a high code over-
head, while complex devices will benefit in clarity when im-
plementing the FSM following the state pattern. The major
benefit however, lies in the standardisation and modularity
of all devices and objects.

Peer Communication In turn, this simplifies the con-
cept for peer communication, or inter device interaction. If
a component was developed within TcCAL, a controlling
device can easily and consistently obtain the running state
of all its secondary devices.

If a device requires interlocking commands, this can also
be implemented on the PLC project level rather than within

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

Software

Software Best Practices

MO2BCO04

43

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 5: TcHAL example.

Figure 6: TcDAL example.

Figure 7: TcCAL example.

Figure 8: Communication layer example.

the library, using the exact same methodology via the use of
the standardised FSM interface.

This enables various developers to be able to quickly un-

Figure 9: Device information.

derstand the functioning of every device, without requiring
all of the specialised in-depth knowledge of a PLC device in-
tegrator. The core functionality is encapsulated away within
the state implementation. This dividing of knowledge makes
it easier for everyone to interact with at the level they need
or are most comfortable with.

Observer Design Pattern
To aid much of the interaction between the various layers,

an observer pattern was also implemented. With all of the
interfaces available, an observer pattern can assist in keeping
track of which objects are being managed or depended on.

The observer pattern [9, 10] details how to design a way
to pass information between objects with dependencies, in
a consistent manner. An object can request to register it-
self to another object as an observer, thus subscribing to
updates from the object which is being watched. Once the
observing object is no longer interested, it can then request
to unsubscribe itself, whereby it no longer gets updates.

This is implemented within the Pelican as an Interface
Manager as shown in Fig. 11. As an example, the inter-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

MO2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

44

Software

Software Best Practices



Figure 10: Valve Finite State Machine.

Figure 11: Interface manager.

face manager provides a way for devices on the TcDAL, to
register themselves with an object from TcHAL. This way,
a device such as a valve, can get the control and feedback
signals from the I/O to indicate if an opened or closed limit
switch has been activated. Essentially, an object within the
TcZookeeper which has implemented the IObservable inter-
face, is able to utilize the Interface Manager in this way.

Legacy Code Integration
To integrate the existing legacy code into the new Tc-

Zookeeper suite, it was necessary to develop an adapter
to connect the two together. The adapter design was de-
rived from the adapter pattern [9, 11] and in this case, the
adapter essentially re-routes the I/O of the hardware from

the legacy code, and obtains the value directly from the in-
terfaces within the Pelican. The adapter here performs the
below functions:

• Map an existing signal into the appropriate Pelican
Interface

• Register each of the new signals with the Interface
Manager

• Connect in the hardware signal to the Interface within
the adapter code

• Implement methods as part of the adapter to pass the
values from the TcHAL into the appropriate interface

As such, the behaviour and functionality of the pre-
existing device remains as it is, however with the additional
feature set which is provided intrinsically from both the Pel-
ican and TcHAL. Overtime, it would be possible to slowly
migrate all of the integrated hardware devices across into
the new TcZookeeper. Combined with user training, the two
PLC frameworks can co-exist until the legacy code becomes
deprecated.

SUMMARY
Software principals have always existed within the soft-

ware engineering domain to aid clarity, guidance and what
is commonly referred to as ‘best practice’. As PLCs shift
closer to the realm of software, it becomes a logical step to
incorporate these principals into the PLC, especially with
the increase in memory and the availability of powerful
programmatic features which are commonly offered within
programming languages. It is noted that while the PLC it-
self does not implement a true programming language, some
adaptions had to be made in order to implement many of the
design patterns mentioned.

Aligning the PLC code closer to common software princi-
ples results in clean and well structured code. It also ensures
that the PLC code is robust, testable and also in a state which
can easily be amended as the requirements change over time.

ACKNOWLEDGEMENTS
The PLC team and authors of this paper worked closely

with other EuXFEL scientific support groups and acknowl-
edge their continuous efforts, input and cooperation. We
thank the rest of the Electronic and Electrical Engineering
(EEE) group, the Information Technology and Data Man-
agement (ITDM) group and the Controls Software and Data
Analysis groups.

REFERENCES
[1] Programmable controllers - Part 3: Programming languages,

International Electrotechnical Commission, IEC 61131-
3:2013; https://webstore.iec.ch/publication/
4552

[2] PLC Programming Then & Now: The History of
PLCs, https://www.c3controls.com/white-paper/
history-of-programmable-logic-controllers/

[3] Architectural Design Records, https://adr.github.io/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

Software

Software Best Practices

MO2BCO04

45

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



[4] Mark Richards, “Chapter 1: Layered Architecture”, in
Software Architecture Patterns, O’Reilley Media, Inc. https:
//www.oreilly.com/library/view/software-
architecture-patterns/9781491971437/ch01.html

[5] NASA Systems Engineering Handbook, NASA/SP-2016-6105
Rev2, pp. 135-138; https://www.nasa.gov/reference/
systems-engineering-handbook/

[6] Test Driven Development, https://www.ibm.com/
garage/method/practices/code/practice_test_
driven_development/

[7] TcUnit - A TwinCAT unit testing framework, https://
tcunit.org/

[8] T. Freyermuth, B. Baranasic, M. Bueno, N. Coppola, L. Fel-
trin Zanellatto, P. Gessler, et al., “Progression Towards Adapt-

ability in the PLC Library at the EuXFEL”, in Proc. 13th
Int. Workshop Emerging Technol. Sci. Facil. Controls (PCa-
PAC’22), Dolní Brežany, Czech Republic, Oct. 2022, pp.
102–106. doi:10.18429/JACoW-PCaPAC2022-FRO13

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides, Design Patterns, Addison-Wesley, 1994.

[10] What is the observer pattern, https://www.ionos.com/
digitalguide/websites/web-development/what-
is-the-observer-pattern/

[11] Patterns in der Softwareentwicklung: Das Adapter-
Muster, https://www.heise.de/blog/Patterns-in-
der-Softwareentwicklung-Das-Adapter-Muster-
7285630.html

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO04

MO2BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

46

Software

Software Best Practices


