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Abstract
The Square Kilometre Array (SKA) Telescope will be one

of the largest and most complex scientific instruments ever
built. The development of a reliable software for monitoring
and controlling its operations is critical to the success of
the entire SKA project. The Local Monitoring and Control
of the Central Signal Processor (CSP.LMC) is a software
component responsible for controlling a key subsystem of
the telescope, i.e. the Central Signal Processor (CSP). The
software is implemented as a “device” within the TANGO
framework, written in Python code.

In this paper we describe a testing strategy that addresses
a series of problems typical of such a large and complex
instrument. It is a multi-level strategy, based on a combina-
tion of automated tests (unit/component/integration), in the
context of CI/CD practices. Software is also tested against
possible errors and anomalous conditions that can occur
while the CSP.LMC is interacting with external subsystems,
which can be simulated.

The paper also discusses needs and solutions based on
data mining test results. This allows us to obtain statistics of
unexpected failures and to investigate their causes. Further-
more, a database containing test results over several weeks
supports discovery of interesting and unexpected patterns
of behaviors of the tests based on correlations about differ-
ent test-related events and data. This helps us to develop a
deeper understanding of the code’s functioning and to find
suitable solutions to minimize unexpected behaviors. In
addition it can be used also to support reliability testing.

THE SKA PROJECT AND THE CSP.LMC
The Square Kilometre Array (SKA) telescope is an inter-

national effort to build the world’s largest radio telescope.
Construction is underway at two primary sites in South
Africa and Australia. These sites will house unprecedentedly
large interferometers designed to observe the sky across two
distinct frequency ranges: Mid-range (350 MHz - 15.3 GHz)
and Low-range (50 MHz - 350 MHz). SKA aims to address
fundamental questions about the universe, including its evo-
lution, the nature of gravity, and the search for extraterrestrial
life. Consisting of thousands of antennas spread over long
distances, the SKA will have a combined collecting area
of approximately one square kilometer. Its unprecedented
sensitivity and resolution will provide insights into cosmic
phenomena, offering a deeper understanding of the early
universe, black holes, and pulsars.

∗ gianluca.marotta@inaf.it

The Central Signal Processor (CSP) is a critical compo-
nent of the Square Kilometre Array (SKA) telescope. It’s
responsible for the real-time processing of the vast amount
of data collected by the SKA antennas, in order to make it
available for scientific data processing. Given the immense
scale of SKA, the CSP is expected to handle unprecedented
throughput of data. The estimated amount of data will be
around 7.3 Tb/s for Low and 8.8 Tb/s for Mid [1].

CSP comprises three primary instruments (as shown in
Fig. 1), each of which is a complex signal processing
subsystem. These are:

• the Correlator and BeamFormer (CBF), that combines
the signals from various antennas to create a unified
and focused view of the sky.;

• the Pulsar Search (PSS), that identifies potential candi-
dates for pulsar discovery;

• the Pulsar Timing (PST), that measures the frequency
of the radiation emitted from pulsar candidates.

On top of these subsystems, the Local Monitoring and
Control (CSP.LMC) ensures the seamless operation of the
CSP by providing real-time health checks, performance met-
rics, and adaptive controls [2]. In other words, CSP.LMC is
the software component that represents the interface of the
entire CSP instrument. It interacts with the Telescope Mon-
itoring and Control (TMC) system, serving as the bridge
between the TMC and the individual components of the CSP.
It communicates to the TMC all the required information to
monitor the CSP’s subsystems and provides the interface to
send all the commands required to perform an observation.
Even though the concept of CSP is the same for Mid and Low
telescopes, some differences can occur in the data reduction
hardware for the two telescopes. Therefore, two instances of
CSP.LMC are developed to address the differences between
the two telescopes.

Figure 1: Simplified schema for CSP.
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TESTING SKA SOFTWARE

Testing software components, especially as intricate and
pivotal as the CSP.LMC in the context of large-scale projects
like the SKA, is of paramount importance. Given its mul-
tifaceted responsibilities, even minor issues can result in
significant operational disruptions. SKA Software needs to
be reliable, ensuring that there’s minimal downtime and that
the system can recover gracefully from unforeseen issues.
Furthermore, addressing software issues post-deployment,
especially in a live environment like the SKA, can be incred-
ibly costly in terms of both resources and time. For these
reasons the testing strategy of software components is of
utmost importance for the realization of such a big project.

The Software Engineering Group of SKA Observatory
(SKAO) consists of more than 100 developers organized into
different Agile Teams. It follows the Scaled Agile Framework
(SAFe) approach, particularly suitable for big and complex
software projects [3, 4]. Individual Agile Teams are usually
responsible for a specific software subsystem, hence for its
quality and its testing strategy.

In their usual workflow, developers use an Continuous
Integration & Delivery and/or Deployment (CI/CD) ap-
proach [5], where changes in code are frequently integrated
and tested in a shared environment. This approach promotes
frequent and earlier detection of integration errors, resulting
in higher code quality, increased development speed, and
more reliable software releases.

Using this approach, code is collaboratively merged into
a remote GitLab repository. Every time a developer pushes
changes in code to this remote repository, a pipeline is auto-
matically started, executing a sequence of operations —in-
cluding running tests — to validate both the code’s quality
and the integrity of generated artifacts. Moreover, the test-
ing process can be enhanced by scheduling recurring tests
within the CI/CD pipeline. There’s also the flexibility to
initiate on-demand tests, for example, in specialized testing
environments that might utilize distinct hardware.

Beyond the development teams and their CI/CD work-
flows, additional tests must be conducted by distinct stake-
holders. This approach mitigates potential biases that emerge
when the same individuals write both the software and its
tests. To this end, specialized Assembly, Integration, and
Verification (AIV) teams are tasked with crafting tests that
directly verify formally agreed telescope requirements. How-
ever, the nuances of verification tests fall outside the scope
of this article.

Spanning the efforts of individual teams, a Testing Com-
munity of Practice brings together developers to exchange
knowledge and best practices about testing. This commu-
nity provides an instant messaging channel and organizes
monthly meetings where developers set the agenda based
on topics they deem important. Typically, teams share tools
and strategies, offering members insights on how to adapt
these for their specific components to enhance quality and
reliability.

CSP.LMC STRUCTURE
The global role of CSP.LMC is to coordinate the request

received from TMC and provides responses on behalf of
the entire CSP instrument. However, CSP.LMC is not just
a singular software entity but a mosaic of different soft-
ware components, developed as Devices within the TANGO
Control System framework [6] and written in Python (py-
tango) [7]. The code utilizes an object-oriented approach,
leveraging specialized classes to address the tasks assigned
to it [8].

To maximize the efficiency of telescope resources, both
Mid and Low telescopes permits users to partition the col-
lecting area into as many as 16 subarrays. Each of these
subarrays functions as a separate instrument, enabling in-
dependent scheduling, initiation, and termination of obser-
vations. The Local Monitoring and Control for each CSP
subsystem, as well as the CSP itself, offer a software inter-
face tailored for these subarrays. Meanwhile, the overarching
management of the entire instrument is the responsibility of
a component known as the controller.

Other CSP subsystems could have a similar structure, with
subarray instances and a controller, plus a number of compo-
nents devoted to directly control the hardware. Some of the
subsystem’s devices are directly monitored and controlled
by CSP.LMC devices, as shown in Fig. 2. In fact, the
CSP.LMC operates in a hierarchical fashion, with top-level
components orchestrating and overseeing lower-level sub-
systems. This design ensures that while each component
is specialized in its functions, there’s a coherent, top-down
approach to monitoring and control. Redundant connec-
tions between various devices guarantee the continuity of
the system behaviour in the event of device failures.

Figure 2: Simplified schema of interaction between CSP
Software Components.

During runtime, all TANGO Devices are containerized
and managed using Kubernetes (k8s) [9], which guarantees
high availability—a critical feature for systems like SKA
that need continuous operation. The fundamental unit in Ku-
bernetes is the pod, representing the most basic deployable
entity within the system. In the SKA software framework,
the Kubernetes pod introduces an additional layer envelop-
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ing the Tango device. The business logic of the Tango device
is implemented in a Python package (Fig. 3).

Figure 3: Simplified schema of the structure of Component
Under Test and interactions.

The infrastructure that containerizes and deploys the
Tango Device within k8s is not managed by the software
component developers. Instead, it’s developed and main-
tained by a dedicated agile team [10]. However, ensuring
that the software effectively communicates with other de-
vices within this framework falls under the purview of the
software component developers.

UNIT, COMPONENT AND INTEGRATION
TESTS

Given the complexity of the system, it’s imperative to de-
vise a multi-level testing strategy. A general categorization
of the test levels — identifying unit, component, and inte-
gration tests — is based on the identification of boundaries
of the system under test (SUT). For more detailed defini-
tions and more details about the strategy, we reference the
official SKAO Software Testing Policy and Strategy Docu-
ment [11]. Many of the concepts and practices described in
such a document are inspired by the ISTQB [12].

Unit Testing is defined as “the testing of individual soft-
ware units (individual or clusters of functions, classes, meth-
ods, modules) that can be tested in isolation [...] the unit
under test is run in an environment that is totally under con-
trol of the developer” [11].

In our implementation, given the object-oriented ap-
proach, unit tests are specifically designed to target the in-
dividual python classes within the codebase. By doing so,
we aim to validate each object’s behavior in isolation, en-
suring its functionality is both correct and predictable. We
employ pytest as our testing framework as it stands out for
its simplicity in writing plain python tests with a rich set of
supporting libraries and its capability to scale from simple
unit tests to more complex functional tests.

Moreover, to ensure that unit tests exercise each SUT in
isolation, mock objects are created to simulate the behavior
of real, complex objects without invoking their associated
side-effects or state. This is particularly beneficial as it

means our tests can run without dependencies, ensuring that
the object being tested is the sole focus.

Component testing is defined as it “aims at exposing de-
fects of a particular component when run in an environment
where other components or services are available, either pro-
duction ones or test doubles” [11]. In our interpretation, the
main purpose of Component Test is to test the component
as a single entity that contains all the business logic. These
tests are meant to verify the component in its environment
and not the real interaction with other devices. Two different
type of component tests are possible for CSP.LMC, depend-
ing on whether k8s environment is taken into consideration:
python-component and k8s-component test.

In python-component the test script connects directly to
the Tango device with the use of the DeviceTestContext
classes of Pytango that allows to test a device without the
need for Tango environment to be running. In the same
context, server components are substituted with mocked
objects, written in a way that simulates the interaction with
the real devices.

In k8s-component tests, on the other hand, the entire ku-
bernetes infrastructure is in place as well as the Tango en-
vironment. The test script is a Tango client that runs in a
specific pod, driven by pytest as well. Instead of server com-
ponents as above, emulators are in place. These fake devices
use the same machinery as the real ones to be deployed in the
k8s cluster. The emulators mimic the interface of the actual
devices to support the needs of the specific tests. Emulators
greatly simplify the internal implementation and eliminate
downstream interactions. Additionally, they incorporate a
range of methods and attributes, enabling external control
over the device’s behaviour and broadening the potential test
cases.

Integration Testing is defined as “Testing performed to
expose defects in the interfaces and in the interaction be-
tween components or subsystems. [...] The SUT consists of
2 or more components, and it is run in an environment where
components or services external to the SUT include produc-
tion ones and test doubles. [...] Integration testing may also
include hardware-software integration testing” [11].

During integration tests, the test script operates within
a pod, similar to a k8s-component tests. However, in this
case, the server component represents the genuine software
element, i.e. the subsystem’s components developed and
released by other teams. Downstream software and hard-
ware can be either present or simulated. In fact, integration
tests are not designed to be end-to-end tests, as their fo-
cus is solely on examining the adjacent interfaces of the
Component Under Test. (i.e. CSP.LMC components). The
presence of data processing hardware is a sensitive situation
for a system like CSP.LMC, so the possibility of performing
integration tests with hardware is critical for the validation
of the functionalities. In this scenario, tests are initiated by
on-demand CI/CD pipeline jobs, coordinated with the teams
overseeing the facilities where the hardware is located.
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FAULT CONDITION ANALYSIS
Among all the test cases, a crucial testing area for a com-

ponent like CSP.LMC, which is dedicated to monitoring and
control, is the management of fault conditions that might
arise in other CSP subsystems. To facilitate the creation of
use cases and their associated tests, five primary areas have
been identified, each containing several subareas. These are
detailed below.

• Networking: error conditions that arise from problems
related to networking connections. Related subareas
are: TangoDB connection, Lost connection with a run-
ning device, Lost connection with a stopped device,
Event subscription, Disconnection during command
execution, Connection timeouts.

• Configuration: error conditions that arise during the
configuration of an observation. Related subareas are:
invalid configuration; unavailable resources, unrespon-
sive subsystems

• Command execution: error condition related to the
execution of commands on subsystems. Related sub-
areas are: wrong input, command not allowed, LMC
device failure, subsystem device failure, slow execution

• Monitoring: error condition that occurs during the
process of monitoring the other subsystems. Related
subareas are: device failures, conflicting events, race
conditions

• Infrastructure: error conditions related to TAN-
GO/k8s infrastructure. Related subareas are: Fail-
ing/Restarting Pods, Tango DB wrong configuration,
Tango DB unavailability

To test the CSP.LMC behaviour in order to cover some of
these tests conditions (e.g. device failures, slow execution),
the behaviour of the subsystem device needs to be externally
driven and errors should occur on-demand. This can occur
only for both python and k8s component tests, because in
these cases the test script can configure and inject appropri-
ate mocks or emulators into the test environment in which
the SUT is run. On the other hand, integration tests can
verify almost only “happy path” scenarios, i.e. where the
subsystems interacting with the SUT (the CSP.LMC) are
assumed to perform as expected.

TESTING INFRASTRUCTURE
Except for unit tests, component and integration tests

sometime exercise the same business logic of the Component
Under Test. As stated before, the main difference between
component and integration testing is the presence or not of
the other subsystems’ devices. The other main difference
lies in the fact that for integration tests it is not possible to
inject failures and undesired behaviour in the downstream
subsystems. This means that there is a significant set of
test cases that can be used in both component (python and

k8s) and integration tests, another set of test cases that are
common to k8s-component and integration (e.g Tango DB
failures) and some test cases that can be only used in k8s-
component, with emulated devices.

Given these overlaps, we strove to reduce redundancy as
much as possible, and formulate test scripts that are para-
metric enough so that they can be applied to more than one
environment and level. This makes it possible to use a testing
infrastructure and testing code with as many shared elements
as possible. This results in a more consistent and easier-to-
maintain infrastructure. A simplified schema is provided in
Fig. 4.

Figure 4: Simplified schema for the testing infrastructure.

Since all three types of tests use pytest as the underly-
ing testing framework, in many cases the test scripts can
be shared among them. Because for higher level tests
(i.e. higher than unit tests) the potential set of stakeholders
is larger and includes not only developers, but also prod-
uct owners and managers, we decided to opt for using the
Gherkin language [13] for writing executable test scripts that
can be easily understood by anybody with sufficient knowl-
edge of the CSP. Gherkin can be used to express human-
readable descriptions of software behaviours without detail-
ing how that functionality is implemented and independently
from a programming language and testing framework. A
specific plugin for the pytest framework handles processing
of gherkin clauses. An example of a gherkin test case is
presented below.
@python_component @k8s_component @integration
Scenario: Turn on CSP

Given CSP Controller setup as off
And all CSP Subarrays are setup as off
When CSP Controller 's OnCommand is triggered
Then CSP Controller is eventually on
And all CSP Subarrays are eventually on

Listing 1: a test written in Gherkin

DATA MINING ON TESTS RESULTS
Data mining aims at processing large and varied historical

data sets to identify relationships that can provide answers
to business problems [14]. In many cases, data mining is
introduced in software testing for the purpose of using data
to drive, or inform, the identification of suitable tests to
write [15].

In our context, we want to use data mining techniques
in another way. We intend to mine multiple test execution
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results because that presents an invaluable opportunity for
extracting meaningful insights, optimizing testing processes,
and improving product quality. When software or systems
undergo multiple test cycles, the accumulated results are a
rich source of data that can be mined for patterns, trends,
and anomalies.

Source data sets consist of test results, i.e. the outcomes
of each execution of any of the tests for the CSP.LMC (across
test levels, test environments, and versions of the SUT and of
the external emulators or subsystems). In addition, for higher
level tests, data points include not only the test outcome (i.e.
failed, passed, error), but also the outcome of each gherkin
step, and the timestamp of each step (so that duration of the
execution of a step can be computed).

The business problems to solve through data mining ad-
dress complex analyses of test results that span two or more
test executions and relationships between behaviours of two
or more tests or steps of tests. The following kinds of analy-
ses can be supported:

1. Trend Analysis: By mining data from multiple test
executions, teams can identify trends in failures and
successes. This is the case for longitudinal studies of
the behaviour of individual tests (i.e. the time series of
outcomes of a specific test, filtered according to differ-
ent test environments, test levels and possibly versions
of specific software components). For instance, if a
specific module consistently fails across multiple test
cycles, it may be indicative of a deeper, systemic issue
that needs addressing.

2. Optimizing Test Suites: Mining can reveal which tests
consistently pass and might be of lower value and which
ones uncover defects, helping in refining and prioritiz-
ing the test suite. This optimization can lead to faster
test cycles and resource savings.

3. Predictive Analytics: By analyzing patterns from past
test results, predictive models can be built to forecast
potential failures in future test cycles. This can guide
teams to proactively focus on potential problem areas.
For example, one can use statistical correlations be-
tween test outcomes or between timing information of
different tests to identify clusters of data points that can
reveal some underlying common and plausible cause.

4. Root Cause Analysis: Mining test data can help in
pinpointing commonalities among failures, aiding in
root cause analysis. This could be particularly useful
in complex systems where failures might not be imme-
diately apparent. We expect that in many cases, test
incidents (i.e. the occurrence of a negative event, where
a test fails or leads to an error) may be due to obscure
bugs that require a substantial effort to be triaged and
eventually diagnosed. For control systems this might
be related to particular race conditions occurring within
the SUT’s parts or occurring in interactions of the SUT
with the rest of the CSP. We expect these situations to

be more frequent and important as the SUT includes
more custom hardware devices in the test environments.
Many of these test incidents cannot be solved simply
by looking at a single test execution. History of the
behaviour of tests and of the SUT is needed to provide
insights.

5. Flakiness Detection: In the realm of automated test-
ing, some tests might intermittently fail, because of
issues like timing, order of execution, or external de-
pendencies. Mining data from multiple executions can
help identify such flaky tests. Analysis of correlation
between test or step outcomes and their execution times
might reveal patterns that suggest certain kinds of weak-
nesses in parts of the SUT.

6. Environment Insights: If tests are executed in various
environments or configurations, mining can provide
insights into environment-specific issues. For exam-
ple, a feature might consistently fail on a particular
environment, indicating compatibility issues.

7. Resource Utilization: Mining can also reveal insights
about resource consumption during tests, like memory
leaks or high CPU usage. These insights can be crucial
for performance optimization.

8. Feedback Loop Enhancement: Continuous integra-
tion and continuous deployment (CI/CD) thrive on
quick feedback loops. Mining data can provide rapid,
actionable feedback to developers, reducing the defect
lifecycle.

9. Enhanced Reporting: Data mining can lead to ad-
vanced visualization of test results, offering stakehold-
ers a clearer picture of product health, risk areas, and
quality metrics.

To implement this kind of infrastructure we are building
upon what is already made available by the currently used
machinery, namely CI/CD services and testing frameworks.
To support data mining the typical Extract/Transform/Load
activities need to be supported, to extract data from test
reports, to transform the data to polish it and to support
statistical processing, and finally store it into some sort of
data warehouse.

For test data the challenges include data integrity, like
consistently identifying test scripts and their steps across
different versions of the SUT and of the tests. Another
critical aspect is correct computation of durations of test or
step executions.

Another challenge is the skills needed to perform these
activities. A combination of data science skills and knowl-
edge about the SUT being tested and the tests themselves
are needed, and are not easy to acquire. For the moment this
is confined to a few members of the team that is developing
the CSP.LMC.

In conclusion, data mining on multiple test execution
results can revolutionize the testing process, offering deeper
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insights, better resource utilization, and improved product
quality. However, to harness its full potential, teams need
to ensure data integrity, have the right tools in place, and
possess the required skills.

CONCLUSIONS
In this paper we presented a comprehensive testing strat-

egy for the CSP.LMC component, which plays a critical role
in presenting the CSP as a unified instrument within the
telescope and also to interact with the TMC.

The testing strategy adopts a multi-level approach.
Throughout this paper we have demonstrated how differ-
ent levels of testing (unit/components/integration) are strate-
gically employed to evaluate our software within distinct
contexts. With unit tests we scrutinize individual python
classes in isolation, decoupling them from dependencies.
Next, we progress to testing individual components, either
through test scripts utilizing the DeviceTestContext without
the Tango environment or by deploying the entire kubernetes
infrastructure with the Tango environment in place using em-
ulators as proxies for real devices. Integration tests extend
the evaluation to the environment where Systems Under Test
(SUT) coexists along with other subsystems components.
Those tests are not devised as end-to-end, but they are ex-
amining real interfaces between two or more systems.

Important aspect of CSP.LMC component is the man-
agement of fault conditions. To test those thoroughly we
have devised a systematic approach to the categorization
of foreseeable failures and rely on emulators to drive the
occurrence of those errors.

Our testing infrastructure has been consolidated to elimi-
nate redundancy and duplication where possible with testing
scripts shared across contexts. Readability of Gherkin test
cases improves shared understanding of the tests among
developers and other stakeholders.

Furthermore, we aim to utilize the data mining techniques
to collect and analyze the results of multiple test runs. This
will aid in addressing systemic issues, identifying elusive
bugs, pinpointing flaky tests and assessing the issues with
the environment. It will lead to optimizing testing cycles,
improved resource utilization and provide valuable insight
for developers while offering a clearer picture to a broader

audience of stakeholders.
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