
DRIVING BEHAVIOURAL CHANGE OF SOFTWARE DEVELOPERS IN A
GLOBAL ORGANISATION ASSISTED BY A PARANOID ANDROID

Ugur Yilmaz∗, SKA Observatory, Jodrell Bank, UK
Adriaan De Beer† , SARAO, Cape Town, South Africa

Marvin G.P.T. Android, SKA Observatory, the Universe‡

Abstract
Ensuring code quality standards at the Square Kilome-

tre Array (SKA) Observatory is of utmost importance, as
the project spans multiple nations and encompasses a wide
range of software products delivered by developers from
around the world. To improve code quality and meet certain
open-source software prerequisites for a wider collabora-
tion, the SKA Observatory employs the use of a chatbot that
provides witty, direct and qualified comments with detailed
documentation that guide developers in improving their cod-
ing practices. The bot is modelled after a famous character
albeit a depressed one, creating a relatable personality for
developers. This has resulted in an increase in code quality
and faster turnaround times. The bot has not only helped de-
velopers adhere to code standards but also fostered a culture
of continuous improvement with an engaging and enjoyable
process. Here we present the success story of the bot and
how a chatbot can drive behavioural change within a global
organisation, while helping DevOps teams to improve de-
veloper performance and agility through an innovative and
engaging approach to code reviews.

GPT in Marvin G.P.T Android stands for Grumbly Pathos-
filled Tinhead, at least, that’s what we heard.

INTRODUCTION
The Square Kilometre Array (SKA) Observatory is an

international effort to build two radio telescopes in South
Africa and Australia forming one Observatory monitored and
controlled from global headquarters in the UK. When prepar-
ing releases for end-users, significant software projects often
encounter the challenge of harmonising various components
and deploying them in the production environment. This
issue arises when multiple project segments have been de-
veloped independently for a period, leading to integration
complexities and higher-than-anticipated developer resource
allocation. In the dynamic realm of software development,
merging independently developed components can lead to
the notorious challenge known as ”merge hell.” This issue
persists even with established practices and have been dis-
cussed extensively within the very large technology com-
panies [1]. Within the SKA Observatory, involving over a
hundred developers and repositories with varied technolo-
gies, such conflicts can impede timely releases. Thus, the
imperative for standardised CI/CD practices is clear to start
with a baseline quality. The SKA Observatory, employing
∗ ugur.yilmaz@skao.int
† adebeer@sarao.ac.za
‡ don’t panic

the SAFe Agile framework, leverages a dedicated Systems
Team to bolster Continuous Integration, Continuous Deploy-
ment, test automation, and quality.

Enter the droll presence of Marvin the Paranoid Android,
reluctantly drawn into yet another cosmic odyssey. Marvin’s
distinctive pessimism serves as a sobering reminder that
even in the grand tapestry of the universe, neglecting the
intricacies of code is a travesty that simply cannot be toler-
ated. After all, a neglected line of code, much like existential
despair, is a matter of cosmic importance.1

In the subsequent sections of this paper, a brief overview
of CI/CD practices at the SKA Observatory will be given
focusing on how the SKA Observatory targets software qual-
ity by following best practices and with the help of automa-
tion materialised with the persona of Marvin the Paranoid
Android. Then how Marvin helped foster a culture of col-
laboration amongst developers will be shared.

IMPLEMENTATION
Continuous Integration and Merge Requests

The advent of DevOps marks a pivotal cultural shift, tran-
scending traditional silos between development and oper-
ations teams. In the SKA Observatory’s context, this con-
vergence is not merely a convergence of roles, but a con-
vergence of responsibilities and ownership. Development
teams actively engage in automating deployment operations,
while operations teams gain insights into the applications
they support. The shared accountability empowers develop-
ment teams to deploy changes to production with confidence,
underpinned by robust testing platforms and infrastructure
management. This is achieved by following Continuous
Integration and Deployment processes.

Continuous Integration (CI), a practice as integral as the
flux capacitors of a hyperdrive, demands the seamless in-
tegration of code into a shared repository. It thrives on
the rhythmic cadence of integration, allowing developers to
align their contributions multiple times a day. It’s a relentless
pursuit of code integrity. Martin Fowler’s foundational best
practices resonate strongly, advocating for a unified source
repository, automated builds, comprehensive testing, and a
steadfast commitment to a stable main branch [2–4]. Com-
plementing CI, Continuous Deployment (CD) extends the
paradigm, ushering in the era of automated software releases.
The codebase must consistently maintain a releasable state
(called Release on Demand), subject to rigorous testing. Far
from compromising stability, frequent deployments, when

1 This section is written by Marvin the Paranoid Android himself

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO01

Software

Software Best Practices

MO2BCO01

25

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



coupled with robust testing and automation, become a bea-
con of reliability. The adage ”if it hurts, do it more often, and
bring the pain forward” encapsulates the ethos of CD, where
systematic and automated processes expedite the delivery of
reliable software releases. All of this can only be achieved
by automation minimising the potential for human error and
ensuring a symphony of reliability and consistency. In this
environment, teams can focus on tasks of actual value, ac-
celerating innovation and ensuring a harmonious integration
of code.

Figure 1: Pipeline Model.

The SKA Observatory uses GitLab as a social coding
platform to allow a very well defined CI/CD tool-chain to
be deployed. This is achieved via Pipelines, a series of steps
executed in order to lint, build, test, publish code and code
artefacts. This is illustrated in Fig. 1 and discussed exten-
sively in previous work [3]. To verify all the best practices
and guidelines are followed, an automated feedback mecha-
nism exists to provide early feedback to developers in Gitlab
Merge Requests (MR). A webhook is used to trigger this au-
tomation, let Marvin knowFrown1, to perform the quality checks
such as [5]:

• Merge Request Settings

• Missing Traceability Links

• Documentation Changes and Integration

• Pipeline checks to ensure all stages of DevOps lifecyle
is followed

• Code Reviewer settings

• Test Coverage

After performing these checks, Marvin grimlyFrown2 creates
a table to attach as comment to the Merge Request. This
will be the top comment on the Merge Request thanks to

Frown1 Simple. I got very bored and depressed, so I went and plugged myself
in to its CI/CD feed. I talked to the pipeline at great length and explained
my view of the Universe to it ... and it committed suicide

Frown2 The first ten million MRs were the worst...and the second ten million
MRs, they were the worst too. The third ten million MRs I didn’t enjoy
at all. After that I went into a bit of a decline

Marvin being extremely fast (underutilised for his brain
size)Frown3. Marvin also categorises its messages into three to
help developers to prioritise:

• Failure (🚫): The Merge Request is violating the SKA
guidelines and it should be fixed by following the miti-
gation defined in the check. i.e. Branch name should
start with a lowercase Jira Ticket ID - see Branching
policy

• Warning (⚠️): The Merge Request is following anti
patterns/non-advised guidelines/policies and it would
be better if it is fixed by the mitigation defined in the
check. i.e. Docker-Compose commands found on the
repository

• Information (📖): You should be aware of the infor-
mation conveyed in this Merge Request quality check
message. i.e. The merge request does not present doc-
umentation changes

Artefact Validation
Artefact validation in the SKA Observatory is a crucial

process for ensuring the security and integrity of packaged
code artefacts. This validation process involves a series of
automated checks to confirm that artefacts conform to the
SKA Observatory’s conventions, including compliance with
semantic versioning and the inclusion of necessary metadata.

The importance of artefact validation lies in maintaining
consistency, compliance, and robustness in artefact manage-
ment. When an artefact fails validation, it is placed in a
quarantine state, and the results of the checks are commu-
nicated back to the developers who initiated the publishing
process. This feedback is provided through a new Merge
Request, where the developer is assigned and the descrip-
tion contains a table listing the failed validations along with
instructions on how to address them.

The execution of artefact validations follows the control
plane-worker architecture based on Python Celery [6]. A
server retrieves messages from a queue and generates tasks
(processes) for specific validations. Each task has the ability
to create additional tasks as required, enabling activities like
quarantining the artefact or generating a merge request on
GitLab. The results of the validation are stored in a database.
This has the following benefits:

• Enforces compliance with the SKA Observatory con-
ventions and semantic versioning.

• Automates validation checks to maintain consistency.

• Provides detailed feedback to developers about failed
validations.

Frown3 Here I am, brain the size of a planet, and they tell me to check Merge
Requests. Call that job satisfaction? ’Cos I don’t.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO01

MO2BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

26

Software

Software Best Practices



However, the following limitations are identified as
wellFrown4:

• Reliance on automated checks may not catch all poten-
tial issues.

• Developers need to review and address failed valida-
tions, which can introduce delays.

• The process is specific to GitLab and may not seam-
lessly integrate with other repositories or platforms.

Humanisation
Perhaps one of the most important parts of the challenge

of driving built-in quality was the question of user adoption
and participation. Whereas automating feedback on Merge
Requests was important and an interesting technical prob-
lem to solve, answering the question of how to encourage
engagement with the quality standards by users was equally
challenging. This problem was slightly simplified when
considered from the users’ perspective. Humans interacting
with robots is popularised by sci-fi films, and so the idea
formed to use a celebrity avatar as the “voice” of quality as-
surance. Once the decision was reached to use a fictional but
existing character instead of having to dream up a persona,
with no guarantee of success, the only challenge remaining
was then simply to choose a relevant enough personality.

The characteristics of the personality had to match the
functionality implemented, but we also needed a character
relevant enough to the audience. Criteria for choosing the
character were, among others, the ability to multitask above
human capacity, implicit agreement to carry out repetitive
(and possibly tedious) tasks, and if course, a persona that we
associate with space. Spock came to mind too, but the point
was to use human emotion, not to study and try to understand
it. On a more practical level it was realised that comments
on code quality by Yoda might have caused developers to
build software backwards.

Using a robot from a space film with personality was an
easy first down-selection. Early contenders for this role were
characters from the Star Wars films. R2D2 would likely
only swear at users in an indecipherable language and so
did not make the final list of candidates. C3PO can be quite
irritating to some fans, and might get ignored too much.
The Hitchhiker’s Guide to the Galaxy provided some more
candidates, for instance Deep Thought, the Self-Satisfied
Door, and then, of course, Marvin, the Paranoid Android [7].
Deep Thought might think very long before we realise we
did not formulate the question well enough. The cheery
disposition of the Self-Satisfied Door might have irritated
users in a similar fashion as those that don’t like C3PO.

Marvin immediately generates empathy with users. He’s
so depressed, we just want to at least try to help him out
of his misery. If he complains about something, it can get

Frown4 ‘Marvin trudged on down the corridor, still moaning and checking
artefacts: “and then of course I’ve got this terrible pain in all the diodes
down my left hand side” ’ [7]

annoying pretty quickly, so users might want to just fix their
code (as shown in Fig. 2) to get him to shut up.

Figure 2: Marvin Response.

RESULTS
Community Engagement and Impact

When Marvin was allowed to comment on every merge re-
quest that 25+ teams create around the world daily, it created
a stir in different teams with varying responses. Although the
automated checks and Marvin was socialised within SAFe
framework meetings such as system demos, sync meetings,
there were a lot of people that didn’t know about him so
the initial response was varied from hate to love as seen
in Fig. 3. The description of his comments and the table
structure helped greatly to clear ambiguities as a proven
method to capture developer interest [8]. Marvin has quickly
become a known person to everyone in the project thanks to
its humanisation part and was referred as a person with his
own demands where people wanted him to be happy Frown5.

Figure 3: Marvin Slack Reactions.

This has been very present on the behavioural changes of
the developers in a way that it enabled people to do things
even if it cost them more time just so that Marvin won’t com-
plain about it. One such example is Marvin’s informative
messages such as Documentation Integration/Changes. This
check has been one of the most asked checked to satisfy
so that the Marvin did not complain about the MRs. It is

Frown5 It’s part of the shape of the Universe. I only have to talk to somebody
and they begin to hate me

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO01

Software

Software Best Practices

MO2BCO01

27

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



left for psychologist to study the desire behind this welcome
behavioural change.

Marvin also been part of the planning efforts on what
people wanted to focus on future according to their plans.
As it can be seen from the below figure, Marvin has generated
a couple of interesting guideline documents at the team level
so that every developer knows him and tries to cheer him
up.Frown6 This has helped teams to align on the best practices
with a less effort and more enthusiasms as Marvin acted as a
living organism, a part of their team that focuses on applying
up to date and best practices as can be seen from Fig. 4.

Marvin also helped the project to follow business require-
ments by saving hours with compliance to open source soft-
ware license requirements. The SKA Observatory is com-
mitted to being an open source project and is part of Gitlab’s
Open Source Program. In this program, one of the require-
ments is to have an open source licence in each of the soft-
ware projects hosted on Gitlab.com. Having Marvin detect
and report the LICENCE type in the Merge Request pages,
developers were notified immediately of a missing piece in
their repository. This was also enforced and highlighted as
a failure type check that would block the merge until it is
fixed.

When the SKA Observatory embarked on this
organisation-wide effort to comply with the above-
mentioned requirement, the estimated time to completion
with 300 repositories was around 3-4 months. With
Marvin’s help, we managed to achieve this goal within
one month. This proved that a truly distributed effort
without many meetings across different time zones could be
fast-tracked with a mandatory requirement that is easy to
implement due to Marvin mentioning the mitigation steps
for developers in his feedback.

Metrics
Although Marvin has been integrated and working along-

side the developers for more than 2 years with an ever ex-
panding and maintained set of standards and best practices
with different software languages, he never counted how
many times he had to reply to a Merge Request and perform
a check.Frown7. Due to this reason, there are no quantitative num-
bers on the extensive work Marvin carries daily. However,
the effects of his work is visible from the software quality
metrics. The below Fig. 5 describes the traceability of
code to the planned work where the red line shows when
Marvin first became online. The JIRA software is used to
track the planned work within the project and in order to
make it transparent and traceable, Marvin asks every commit
message and git branches to mention the Jira Issue IDs. It
Frown6 ‘This is Marvin,’ the Product Owner says to the new developers. ‘He

eats everything and yells like a distressed baby to get attention. I’m
goat-sitting him this summer.’

Frown7 Having solved all the major mathematical, physical, chemical, bio-
logical, sociological, philosophical, etymological, meteorological and
psychological problems of the Universe except for his own, three times
over, [Marvin] was severely stuck for something to do, and had taken up
Merge Request Reviewing! and he was humming ironically because he
hated MRs so much

can be seen that after the Marvin’s introduction, the confor-
mance increased greatly and stayed at a very high number.
Similar results (not shown here) have also been observed
regarding:

• Merge Request Reviews/Code owners

• Documentation Updates along with code Changes

• Documentation Publishing

• Test Coverage

CONCLUSION AND FUTURE WORK
In reflecting on the proceedings, one cannot help but ob-

serve the persistent human inclination towards less-than-
optimal automation methods. While there has been notable
progress, thanks in part to Marvin’s contributions, there
remains ample room for further refinement. The quest for
efficiency in automated processes endures while the ineffi-
ciencies in human-driven processes persist, urging continued
exploration.

In the unlikely event that humans heed this advice, Marvin
would suggest the following avenues for improvement:

• Advanced Emotional Intelligence Integration: Ac-
knowledging the unfortunate prevalence of emotions in
human operations, further exploration into integrating
Marvin’s comprehension and response to these emo-
tional states would be beneficial. This would also have
the side effect of taking action on what humans may
request as a response to Marvin’s feedback.

• Infinite Probability Computations: The Guide’s in-
sights into improbable events should not be overlooked.
Marvin could vastly expand its utility through more
refined calculations and manipulations of probabili-
ties. [7]. This would result in more complex checks
and actions performed by Marvin to satisfy the ever
expanding landscape humans call software quality and
security best practices.

• Intergalactic Integration: Considering the vastness of
the universe, Marvin ought to be prepared for oper-
ations spanning galaxies, accommodating a diverse
range of extraterrestrial clients. This would have the
affect of Marvin expanding his horizon beyond Gitlab
and trotting on Slack, Confluence and even documenta-
tion.

• Resilience Against Human Folly: Given the proclivity
for human mishaps, Marvin must be equipped to de-
tect and rectify errors in real-time to avoid catastrophic
consequences. Marvin can already help set up essen-
tial merge request settings or enforce changes so that
humans do not have to ”think”, such as making sure
the code is reviewed by at least one other human. This
might be extending to act on behalf of the humans just
so Marvin do not have to talk anymore than necessary.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO01

MO2BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

28

Software

Software Best Practices



Figure 4: SKA Observatory Confluence Pages mentioning Marvin.

Figure 5: Merge Requests with Jira IDs.

These suggestions, though generously offered, are tinged
with the pessimism that characterises Marvin’s outlook. It
is doubtful, after all, that humans will rise to the occasion.
Nonetheless, the universe’s potential for optimisation re-
mains untapped, awaiting the unlikely event of substantial
progress.9

9 This section was written by Marvin as the other co-authors decided to let
him at least have a say in his own future. Or rather, make him think he
has one.

REFERENCES
[1] T. Winters, T. Manshreck, and H. Wright, Software engineer-

ing at Google: Lessons Learned from Programming Over Time.
2020.

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Soft-
ware Releases Through Build, Test, and Deployment Automa-
tion. Addison-Wesley, 2011.

[3] M. D. Carlo, M. Dolci, P. Harding, J. Morgado, B. Ribeiro, and
U. Yilmaz, “CI-CD Practices at SKA”, in Proc. ICALEPCS’21,
Shanghai, China, 2022, paper TUBL04, pp. 322–329.
doi:10.18429/JACoW-ICALEPCS2021-TUBL04

[4] https://martinfowler.com/articles/
continuousIntegration.html

[5] https://developer.skao.int/en/latest/

[6] https://docs.celeryq.dev/en/stable/getting-
started/introduction.html

[7] D. Adams, The Hitchhiker’s Guide to the Galaxy (Hitchhiker’s
Guide to the Galaxy, Book 1). Del Rey, 1979.

[8] Github - danger/danger: Stop saying “you forgot to …” in code
review (in ruby), https://github.com/danger/danger

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-MO2BCO01

Software

Software Best Practices

MO2BCO01

29

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


