
TARANTA PROJECT - UPDATE AND CURRENT STATUS
Y. Li∗, V. Hardion, M. Eguiraun, J. Forsberg, M. Leorato

MAX IV Laboratory, Lund, Sweden
D. Trojanowska, M. Gandor, S2Innovation, Kraków, Poland

M. Canzari, INAF-OAAB, Teramo, Italy
V. Alberti, INAF-OATs, Trieste, Italy
H. Ribeiro, Atlar Innovation, Portugal

A. Dubey, Persistent Systems, Pune, India

Abstract
Taranta, developed jointly by MAX IV Laboratory and

SKA Observatory, is a web based no-code interface for re-
mote control of instruments at accelerators and other scien-
tific facilities. It has seen a great success in system develop-
ment and scientific experiment usage. In the past two years,
the panel of users has greatly expanded. The first generation
of Taranta was not able to handle the challenges introduced
by the user cases, notably the decreased performance when
a high number of data points are requested, as well as new
functionality requests. Therefore, a series of refactoring and
performance improvements of Taranta are ongoing, to pre-
pare it for handling large data transmission between Taranta
and multiple sources of information, and to provide more
possibilities for users to develop their own dashboards. This
article presents the status of the Taranta project from the
aspects of widgets updates, packages management, optimiza-
tion of the communication with the backend TangoGQL, as
well as the investigation on a new python library compatible
with the newest python version for TangoGQL.

In addition to the technical improvements, more facili-
ties other than MAX IV and SKAO are considering to join
Taranta project. One workshop has been successfully held
and there will be more in the future. This article also presents
the lesson learned from this project, the road map, and the
GUI strategy for the near future.

INTRODUCTION
A web-based Graphic User Interface (GUI) application

tailored for big research facilities represents a pivotal tool
in advancing scientific research and experimentation within
this specialized field. In this academic context, we will
introduce a web-based GUI application that is involved in
big research facilities and plays a critical role in facilitating
and enhancing various aspects of scientific experiments and
data visualization.

Taranta serves as a bridge between a Tango ecosystem
and the researchers who utilize its resources. It provides
an intuitive and accessible platform through web browsers,
simplifying experiment setup, data acquisition, and post-
processing tasks. It helps the end users to build a user ori-
ented software. This article will explore the improvement on
the fundamental components of Taranta in the synchrotron

∗ yimeng.li@maxiv.lu.se

and radio telescope context, emphasizing their roles in device
debugging, beamline control, and experiment management.

Taranta, initially named Webjive, was started in 2018 [1]
at MAX IV shortly thereafter joined by SKAO. This web
application aims at providing a no-code interface for end-
users to easily build up their own GUI with minimal coding
skills [2]. In 2019, this project was renamed to Taranta and
in 2021, officially entered in the Tango Controls Collabo-
ration [3] portfolio. Since then, Taranta has undergone a
continuous process of development and exploration, with the
aim of incorporating new features and optimizing the user
experience. As the spectrum of user requirements contin-
ues to broaden, the expansion of current context of Taranta
becomes foreseeable.

After these years of development and learning from users’
experiences, Taranta version 2.x was released. This article
delves into the limitations have been seen on previous release
of Taranta (version 1.x) and the improvements achieved in
Taranta version 2.x, specially the enhanced frontend per-
formance in handling large number of data points. The
improvements on data transmission and widgets are also
highlighted, affording researchers the ability to seamlessly
monitor equipment, tune parameters, and greater control
over experimental processes.

FRONTEND IMPROVEMENT

Refactoring on Data Management
The refactoring on the data transmission and management

is one of the biggest improvement of this second version.
Taranta currently consists of two views: Devices and Dash-
boards. In Devices, a generic view of all devices available
on the specified Tango database is provided, where users
can navigate through the device tree and interact with a se-
lected device. An example of the device viewer is shown
in Fig. 1. One can read the device’s current state and
interact with its attributes and commands, and access the
user actions on this tango device through Taranta.

In the Dashboards view, a variety of widgets can be uti-
lized to create a graphical user interface for different pur-
poses on an empty canvas. It allows users to easily develop
and customize a dashboard and can immediately run the
dashboard to interact with Tango devices. Once created, the
dashboards can be saved, shared within the same user group
and exported to a json file.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03

Software

User Interfaces & User Experience

FR2BCO03

1657

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: Taranta Devices panel.

In Taranta, a single thread controls the communication
between the front end and the data source, which means
it opens a socket when a dashboard switches from edit to
run mode and closes when the dashboard stops running.
This architecture had a good-enough performance for small
databases, the response was fast and immediate. However,
when the number of attributes increased, a performance
issue was noticed. Over time, a running dashboard may
experience gradual performance degradation, occasionally
leading to a complete freeze in functionality.

Complexity of a dashboard also decreases the front end
performance. It took more time to re-render a complicated
running dashboard as any attribute change event caused the
whole dashboard to be re-rendered. In order to optimize
communication, reuse the logic for existing views, and more
importantly for any future expansion, a new architecture for
data management within the Redux store [4] was introduced.
The diagram of the new structure is shown in Fig. 2. In-

Figure 2: Websocket block diagram.

stead of directly fetching data from the backend server Tan-
goGQL, a websocket middleware was established between
the Redux store and TangoGQL, facilitating data retrieval
from TangoGQL to be stored in the Redux store. Additional
to the socket listener, the middleware also continuously lis-
tens to redux events, such as subscribe event and unsubscribe
event [5]. It also opens the possibility to create customized
listeners in the middleware to meet potential future require-
ments. The structure of the store is shown in Fig. 3. One
significant improvement on this structure is that any change
in the store will only cause the respective subscribed compo-
nents to re-render, avoiding unnecessary rendering of static
components. Another feature that is worth to mention is the
data storage after a dashboard stops running. In the previous
versions (version 1.x), there is no data stored in the front end.

Figure 3: Structure of the Redux store.

Once the user stops running any dashboard, the subscription
stops immediately. For some use cases, it is not sufficient for
a continuous monitoring. Therefore, from Taranta 2.0, in the
event of a dashboard’s interruption, the most recent attribute
value will be retained in the Redux store and presented to
users upon the dashboard’s resumption.

Runtime Performance Analysis A runtime perfor-
mance analysis was undertaken to compare the two archi-
tectures of communication on the MAX IV largest database
by running a dashboard with all existing widgets and 20 dif-
ferent attributes, where data points are injected every three
seconds. The performance was measured by recording a run-
ning dashboard for around 1 min on Chrome DevTool. The
versions in the comparison are Taranta 1.3.12 and Taranta
2.4.0. The test results for the first running minute are shown
in Fig. 4, where the rendering and scripting in version
2.4.0 take only half the time compared to version 1.3.12.
After running 30 minutes, the performance was measured
again and the comparison are shown in Figs. 5 and 6. We
can see that in version 1.3.12, scripting takes 397 ms (48%)
of the CPU time in one data injection period, while in ver-
sion 2.4.0, it only takes 144 ms (27%). Also, the rendering
time is reduced by 62% compared to version 1.3.12.

Table 1 shows the runtime heap size usage where the value
range represents the min and max usage in the measurement.
The heap size in version 1.3.12 is notably increasing with
time while in version 2.4.0 it shows a comparatively stable
value. Due to the all rendering issue in Taranta 1, data
messages cannot be processed fast enough, which results in
a message queue and could possibly lead to a memory leak.

The analysis also includes the peak response time of live
data plotting, which was identified as the most resource-
intensive in terms of RAM consuming. Figures 7 and 8 show
a single animation frame where all widgets are rendering. In
version 2.4.0, only the plot widgets are rendering since the
other attributes are not updating at that moment. However,
before refactoring, Taranta was not able to only render the
new coming values. We can see that it caused a peak CPU
time in version 1.3.12 while in version 2.4.0 the time is short
even if it still causes a frame rate drop, as the top red bar
implies.

In this test, on average, the runtime performance for ver-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03

FR2BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1658

Software

User Interfaces & User Experience



Table 1: Heap Size Usage

Taranta Version short run long run

1.3.12 25.8 MB-41.5 MB 172 MB-246 MB
2.4.0 49.1 MB-64.7 MB 52.2 MB-81.7 MB

(a) (b)

Figure 4: Performance analysis for the first running minute
in version 1.3.12 (a) and version 2.4.0 (b).

Figure 5: Taranta 1.3.12 one cycle update after running 30
minutes.

sion 2.4.0 is improved 54% compared to the version before
refactoring.

Widgets Update
Due to the changes introduced with the new data commu-

nication architecture, existing widgets must be refactored. In
addition, a few more widgets have been developed to meet
the increasing needs from facility users. The widgets can be
categorized by dealing with different use cases, as shown in
Table 2. There are nine groups of widgets so far [6]. The
label widget can be used for displaying thematic blocks and

Figure 6: Taranta 2.4.0 one cycle update after running 30
minutes.

Figure 7: All widgets rendering on Taranta 1.3.12.

Figure 8: All plot widgets rendering on Taranta 2.4.0.

proves valuable for organizing distinct areas within a single
dashboard. Attribute related widgets are most commonly
used. There are different attribute widgets capable of read-
ing and writing attributes of various data types. Monitoring
data can be realized by running plot widgets, in which the X
and Y axis can be configured dynamically by users.

Sending commands to control devices can be done
through a group of command widgets. From Taranta version
2.x, a few simple command widgets such as command ex-
ecutor and writer are deprecated. Instead, a new combined

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03

Software

User Interfaces & User Experience

FR2BCO03

1659

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Table 2: Widgets Categories

Categories Widget Name
Attributes Attribute Display

Attribute Dial
Attribute Writer
Attribute Writer Dropdown
Boolean Display
LED Display
Spectrum Table
Tabular View

Commands Command File Widget
Command Switch
Command Widget

Dashboard Embed Page
Variable Selector

Data Plot Attribute Heat Map
Attribute Plot
Attribute Scatter
Spectrum 2D widget
Timeline Widget

Grouping Widgets Box Widget
Images Image Display

Image Table
Labels Label Widget
Logs Attribute Logger

Elasticsearch Log Viewer
Sardana Macro Button

Sardana Motor

command widget is created to handle variant command input
argument and execution. “Command Switch” is a special
widget in which users can listen to a device attribute and
specify an ON and OFF status separately. When a dashboard
starts running, if the attribute’s value equals either of the
specified statuses, the command switch will stay as the cor-
responding execution state. If the attribute’s value is neither
ON or OFF, a red exclamation mark will show up with a
warning message.

Box widget was developed to handle multiple widgets
together. It allows users to group multiple widgets inside a
box, enabling users to define complex dashboards. One layer
of box nesting is also supported. Box widget makes it easier
to batch process widgets and managing more complicated
dashboards.

Monitoring device running logs and camera streaming are
also available in Taranta version 2.x. Image display widget is
able to stream tango image attribute. This feature facilitates
remote data acquisition monitoring for users. For handling
large image transmission, data compression is applied by
using aiohttp web response compression method [7] in Tan-
goGQL. Elasticsearch log viewer widget was introduced to
show device running logs from Elasticsearch server. This
functionality proves highly beneficial for analyzing device
performance. Users can also customize the log level and
refresh time, as well as the displaying field context.

As part of the Tango control community, Taranta also sup-
ports interaction with Sardana [8], a program for experiment
control. With this feature, data acquisition can be steered
from Taranta. To control a motor, one can use Sardana mo-
tor widget. It provides an interface to move a motor to a
specified position while monitoring its state transition. In
addition, executing Sardana macros is also available from
Taranta. Specifying corresponding Pool, Macroserver and
Door devices, one can select a macro and specify arguments,
to run experiments in run mode.

With the increase of demands on dashboard complexity,
the “Dashboard Variable” was introduced to handle device
change for multiple widgets. Each dashboard can define
a list of dashboard variables, each one is assigned with a
device. The variable can be selected the same way as other
tango devices. The connected device can be changed via
the Device Selector widget. Once the device is changed, all
widgets with this variable selected will be synchronized to
the new device.

Packages Management
In order to enhance the security of Taranta and ensure the

continuity of development, a great effort was made to resolve
the critical vulnerabilities of this project. In this migration,
446 vulnerabilities were reduced to 24 warnings, in which all
critical vulnerabilities were resolved. Critical vulnerabilities
in web applications encompass a spectrum of weaknesses
that, if left unaddressed, can lead to severe security breaches.
These vulnerabilities may arise from coding, configuration,
or design issues, and they open doors for various types of
attacks, including but not limited to Cross-Site Scripting
(XSS) [9], Cross-Site Request Forgery (CSRF) [10], and
remote code execution. Many of these vulnerabilities in
Taranta project are related to outdated libraries, so the first
step was to upgrade the main libraries and the dependency
chain. React was upgraded from version 16 to version 17 and
some of the class components were refactored to function
components for easier management of state and side effects
with hooks [11]. Since it is important to keep the balance
between delivering new features and maintenance, it was not
directly upgraded to React 18. But that is certainly in the next
step of the migration. The Node.js image for Docker was
also upgraded from 14-alpine to 18-alpine and accordingly,
a series of refactoring on the affected components were
involved to ensure the application is compatible with Node.js
18.

TANGOGQL
TangoGQL is a GraphQL [12] web server which integrates

with Tango database and can directly communicate with
Tango devices [13]. TangoGQL is used as a back end ser-
vice in Taranta project and connects Taranta and the Tango
control system. The module diagram is shown in Fig. 9,
where TangoGQL mainly is built on top of PyTango [14],
aiohttp [7] and Graphene [15]. PyTango is used for querying
the Tango database at a specified tango host, and commu-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03

FR2BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1660

Software

User Interfaces & User Experience



nication with Tango devices. Aiohttp is a HTTP server for
Python. Graphene maps the predefined GraphQL schema
to the endpoints and connects GraphQL queries with the
Tango system.

To improve the application performance, the communica-
tion with TangoGQL is also optimized for Taranta version
2.x. The task cancellation is optimized so that the subscrip-
tion can be smoothly terminated even before all listeners
have been set up for a subscription. It reduces the chance to
cause resource leakage in the long run, which could affect
performance. Previously, only exported tango devices was
fetched due to the performance issue. However, it was pre-
venting properties access on non-running devices. With the
communication refactoring in Taranta version 2.x, the perfor-
mance issue has been substantially mitigated. Consequently,
the query has been adapted to not require a queried device to
be exported. It will simply return the device information as
long as it is registered in the Tango database. If the queried
device does not exist, an error would be returned to the front
end.

In addition, the linting in continuous integration (CI)
pipeline have been enhanced and the documentation for local
development has been revised to facilitate the development
process for developers.

To keep up with the CPython release [16], the call for Tan-
goGQL to support Python 3.10 is crucial. Package graphql-
ws is used to support the websocket communication for
GraphQL but unfortunately it is incompatible with Python
3.10. Therefore, a new library is needed for a replacement.
A preliminary investigation was done and Ariadne was found
to be a possible replacement on graphql-ws. Ariadne is a
python library for building GraphQL APIs. It simplifies the
process of creating and serving GraphQL APIs in Python by
providing a framework for defining schemas, resolvers, and
handling GraphQL queries and mutations [17]. A prototype
of integrating Ariadne in TangoGQL was developed and
tested working with Taranta. The drawback of this approach
is that there are implicit dependencies, which makes the
implementation not straight forward. More work on com-
pleting the GraphQL schema and better structuring the code
will be looked into as the next step in TangoGQL.

Figure 9: Taranta back end module view.

ROADMAP AND FUTURE
The goal of Taranta project is to build a no-code platform

to enable the facility users to easily develop their own user
interface. With its growing interest to a broader user base,
this project has gained higher expectations on its possibili-
ties. Accessing multiple tango databases is on the top list.
Some user groups need to access to multiple databases’ de-
vices. For example, for the vacuum team at MAX IV, it is
important to access vacuum devices throughout the facility,
to be able to analyze the system performance. However,
current Taranta was built to only support communications
within one database. We have developed a prototype for en-
abling cross-database communication from the Dashboards
view, and we will persist on developing a comprehensive
and mature solution.

Another interesting topic is supporting SVG synoptic
viewing on Taranta. The synoptic view is a holistic per-
spective of a particular control system. It’s an overview
which allows users to understand the entirety of a complex
system by presenting essential information in a clear and
concise manner. Since the synoptic application at MAX
IV is developed as a desktop application, it is difficult for
the users to access from outside of the control room. Sup-
porting synoptic views from Taranta would make remote
access much easier and the owner of the synoptic view can
immediately update it without repackaging and installation.

Additionally, dashboard versioning with MongoDB and a
better management on widgets are also considered in our fu-
ture work. Moreover, modularization of widget development
is also considered an important component of our roadmap.

CONCLUSION
With the development of Taranta and the growth of the

user community, challenges and potentials have arisen. To
better align Taranta with prospective user requirements, a se-
ries of improvements have been put into effort in this project.
This article presents the enhancements that have been imple-
mented in Taranta version 2.x, encompassing aspects such as
communication architecture, widgets refinements, package
management and backend communication. In the new re-
leased version, critical vulnerability issues have been largely
resolved, four new widgets have been developed and a no-
table enhancement has been achieved in terms of runtime
performance, resulting in a 50% improvement in both script-
ing and rendering time. Looking ahead, continued efforts
are needed to develop new features, further optimize the Tan-
goGQL communication, expand current widget functionality
to accommodate diverse user requirements.

REFERENCES
[1] M. Eguiraun et al., “Web Interface to Tango Control Systems

at MAX IV”, in 12th NOBUGS Conference, New Opportuni-
ties for Better User Group Software, 2018.

[2] M. Eguiraun, V. Alberti, A. Amjad, M. Canzari, J. Forsberg,
V. Hardion, et al., “Taranta, the No-Code Web Dashboard in

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03

Software

User Interfaces & User Experience

FR2BCO03

1661

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Production”, in Proc. ICALEPCS’21, Shanghai, China, Oct.
2021, pp. 1017–1022.
doi:10.18429/JACoW-ICALEPCS2021-FRAR01

[3] A. Götz et al., “The Tango Controls Collaboration Status in
2021”, in Proc. ICALEPCS’21, Shanghai, China, Oct. 2021,
pp. 544–549.
doi:10.18429/JACoW-ICALEPCS2021-WEAR01

[4] Redux Introduction, https://redux.js.org/
introduction/

[5] M. Canzari et al., “Improving Performance of Taranta: Analy-
sis of Memory Requests and Implementation of the Solution”,
presented at ICALEPCS 2023, Cape Town, South Africa,
2023, paper TUPDP044, this conference.

[6] aranta - Tango on web, https://taranta.readthedocs.
io/en/latest/widgets.html

[7] Asynchronous HTTP Client/Server for asyncio and
Python, https://docs.aiohttp.org/en/stable/
web_reference.html#aiohttp.web.StreamResponse.
enable_compression

[8] Sardana 3.4 Documentation, https://www.sardana-
controls.org/users/overview.html

[9] D. Zubarev and I. Skarga-Bandurova, “Cross-Site Script-
ing for Graphic Data: Vulnerabilities and Prevention”, Proc.
DESSERT 2019, 2019, pp. 154-160.
doi:10.1109/DESSERT.2019.8770043

[10] A. Barth et al., “Robust Defenses for Cross-Site Request
Forgery”, 15th ACM conference on Computer and communi-
cations security, 2008, pp. 75–88.
doi:10.1145/1455770.1455782

[11] D. Bugl, Learn React Hooks: Build and refactor modern
React.js applications using Hooks. Packt Publishing, 2019.

[12] GraphQL, A query language for your API, https://
graphql.org/

[13] TangoGQL, https://gitlab.com/tango-controls/
web/tangogql

[14] S. Rubio-Manrique et al., “Dynamic Attributes and Other
Functional Flexibilities of PyTango”, in Proc. ICALEPCS’09,
Kobe, Japan, Oct. 2009, paper THP079, pp. 824–826.

[15] GraphQL in Python, https://docs.graphene-python.
org/en/latest/quickstart/#introduction

[16] Python Enhancement Proposals, https://peps.python.
org/pep-0602/

[17] Ariadne, https://ariadnegraphql.org/docs/intro

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03

FR2BCO03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1662

Software

User Interfaces & User Experience


