
A LEAN UX APPROACH FOR DEVELOPING EFFECTIVE MONITORING
AND CONTROL USER INTERFACES: A CASE STUDY FOR THE SKA

CSP.LMC SUBSYSTEM
V. Alberti∗, INAF-OATs, Trieste, Italy

C. Baffa, E. Giani, G. Marotta, INAF-OA Arcetri, Firenze, Italy
M. Colciago, I. Novak, Cosylab Switzerland, Brugg, Switzerland

G. Brajnik, University of Udine and IDS, Udine, Italy

Abstract
The Central Signal Processor Local Monitor and Control

(CSP.LMC) is a software component that allows the flow of
information and commands between the Telescope Manager
(TM) and the subsystems dedicated to signal processing,
namely the correlator and beamformer, the pulsar search
and the pulsar timing engines. It acts as an adapter by spe-
cialising the commands and associated data from the TM
to the subsystems and by exposing the subsystems as a uni-
fied entity while monitoring their status. In this paper, we
approach the problem of creating a User Interface (UI) for
such a component. Through a series of short learning cycles,
we want to explore different ways of looking at the system
and build an initial set of UIs that can be refined to be used
as engineering UIs in the first Array Assembly of the Square
Kilometre Array. The process heavily involves some of the
developers of the CSP.LMC in creating the dashboards, and
other ones as participants in informal evaluations. In fact, the
opportunities offered by Taranta, a tool to develop web UIs
without needing web-development skills, make it possible
to quickly realise a working dashboard that can be promptly
tested. This also supports the short feedback cycle advocated
by a Lean UX approach and maps well in a bi-weekly sprint
cadence. In this paper, we will describe the method and
present the results highlighting strengths and pain points
where faced.

INTRODUCTION
The SKA Observatory (SKAO) occupies a prominent role

in the framework of modern, ambitious scientific projects [1].
The two telescopes that comprise the observatory will pro-
vide the scientific community with powerful magnifying
glasses to observe the universe at radio frequencies. Being
a complex system, the SKA project adopted a staged pro-
gramme to incrementally deliver the telescope and reduce the
risk of not identifying issues promptly, therefore providing
the scientific community with a sub-optimal instrument. The
goal of the first stage, Array Assembly 0.5 (AA0.5), which
is planned to last until the end of next year, is to demonstrate
a working implementation of the architecture and supply
chain as early as possible. The system being verified consists
of 4 dishes, 6 stations, and all the necessary infrastructure
positioned in the Karoo and Murchinson deserts, respec-
tively. The telescope software delivery is coordinated by
∗ valentina.alberti@inaf.it

leveraging the Scaled Agile Framework (SAFe) [2], whose
3-month heartbeat1 helps synchronise the work developed by
about thirty teams. As systems grow in complexity, the need
for clear, intuitive, and efficient user interfaces becomes of
paramount importance, especially in sectors where precision
and rapid responses are critical. In the context of growing
agile methodologies, Lean UX has emerged as an approach
that blends product and interface design processes into it-
erative cycles. It integrates feedback loops and constant
iteration, ensuring that the UI evolves in tandem with user
needs and system requirements [3]. This study presents an
exploration of Lean UX principles applied to the CSP.LMC
subsystem’s Monitoring and Control UIs. Key to this im-
plementation was the utilisation of Taranta [4], a tool that
allows for creating web-based GUIs for the TANGO Control
System [5] devices. The Lean UX method had to be tuned to
take into consideration the specific context of the study: the
final user developed the dashboards himself, thanks to the
opportunity given by Taranta; the team involved isn’t a UI
team but rather the control software development team; the
selected approach limited the initial scope of the dashboards,
with plans to increase it later on. Through this paper, we aim
to detail our journey, methodologies employed, and lessons
learned. Our hope is that, by sharing our experiences, we
can offer insights and facilitate the use of Lean UX princi-
ples and methods in the context of other complex control
systems and teams developing them.

CSP.LMC
The Central Signal Processor (CSP) is a core component

of the SKA software, responsible for processing data re-
ceived from the antennas in order to enable further scientific
analysis [6]. It comprises three primary instruments, here-
after referred to as ”subsystems”, that are devoted to specific
data processing:

• The Correlator and Beam Former (CBF) processes raw
antenna data to produce visibility2.

• The Pulsar Search (PSS) identifies potential candidates
for pulsar research.

1 SAFe bases its cadence on periodic events among which there are Program
Increments (PIs): a PI is a time frame during with an Agile Release Trains
plans, and progressively releases a working system. the length of a PI
can vary between 8-12 weeks, but in the SKA project case it has been
extended to 3 months.

2 Visibilities are complex flux measurements in spatial frequency space

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

FR2BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1650

Software

User Interfaces & User Experience



• The Pulsar Timing (PST) determines the period and
irregularities of identified pulsar candidates.

On top of these three subsystems, another one, i.e. the Lo-
cal Monitoring and Control (CSP.LMC) acts as the primary
interface for the collective CSP apparatus, presenting it as
a unified unit to clients (TM) hiding its complexity. Like
all software components in the SKA project, it is developed
using the TANGO Control Framework and comprises multi-
ple ”devices”, each fulfilling a unique role. At AA0.5 the
basic functionalities of only 2 of the three engines will be in
place, namely the CBF and the PST. Within the SKA com-
prehensive software, the CSP.LMC receives commands from
and conveys essential details for monitoring the CSP subsys-
tems to the Telescope Manager. It also offers the necessary
interfaces for subsystem configuration. The CSP.LMC’s
coding is undertaken by a dedicated Agile group known as
the CREAM team, within the SKA software’s SAFe devel-
opment approach. Teams release increments of prioritised
functionalities in two-week-long sprints during the course
of a Program Increment.

TARANTA
Taranta is a web application that provides the user with

the ability to create a graphical user interface to interact with
Tango devices [4]. It comprises two main components. The
frontend component is a React client that provides a generic
device view, similar to the Jive desktop application [7], and
a visual editor to create new dashboards and run existing
ones. The backend implements the GraphQL API to Tango
devices. Embracing the no-code paradigm [8], Taranta gives
the end user the ability to create their own dashboards, sig-
nificantly reducing the user requirements gathering phase
and de facto merging the design and implementation steps
typical of UI creation process. Provided with a set of wid-
gets, the UI creator drags and drops them on the canvas and
configures them with the correct Tango devices focusing
on very specific use cases and workflows. If needed, the
ability to customise the look and feel of a widget by means
of Cascading Style Sheets (CSS) properties is also available
when developing a dashboard. In addition to the dashboard
development process, the Taranta development team owns
the analysis of user needs in terms of new widgets and im-
provements in style, functionality, and performance. Once
understood and prioritised, the team proceeds with the de-
sign and implementation of the essential building blocks of
the UIs, called Taranta widgets.

PROCESS AND TECHNIQUES, A
THEORETICAL INTRODUCTION

Initially proposed by Jeff Gothelf and Josh Seiden [3],
Lean UX is a mindset and a set of techniques that aim at
making the user experience a focal point of the development
of a product. It creates a deeper shared understanding of
the user needs by investigating the root causes that generate
them. Having as part of its foundation the Agile software
development and the Lean Start-Up Cycle, it promotes very

fast learning cycles that allow for frequent validation and
adaptation of proposed design solutions. This fits well with
SAFe and the biweekly cadence of team iterations. The
process starts with a number of prioritised assumptions and
hypotheses that need to be validated through the collection
of pieces of evidence [9].

To properly adopt the Lean UX approach we relied on a set
of well-known techniques such as semi-structured interviews,
user profiles, prototypes and user testing. We introduce all
of them in the following.

• Semi-structured Interviews A semi-structured inter-
view is a qualitative research method in which appro-
priately selected stakeholders are interviewed 1-to-1,
following a general set of open questions. The inter-
view script is not rigid and can be altered when the
opportunity to further explore a theme or a response
presents itself. The goal is to collect design-relevant
information that can include the characterization of the
users and the context in which they operate [10].

• User Profiling. Users are the beneficiaries of the im-
plemented interface. To better provide them with a
meaningful tool we have to be able to figure out what
user-related aspects are relevant for the design. Their
needs, expectations and behaviours in relation to the
system are fundamental pieces of information and are
well captured as role profiles which include a descrip-
tion of the context in which some tasks are performed,
(workflow, physical environment, social situation, exter-
nal sources, background, etc.), of characteristics of the
performance of the role (frequency, intensity, duration,
complexity, etc.) and design objectives that are impor-
tant for the role (ease of learning, efficiency, reliability,
accuracy, etc.) [11].

• Prototyping. Prototyping is the activity of creating
artefacts supporting or suggesting a certain set of ac-
tions to be performed with the system in question. The
intended audience is a crucial parameter in identifying
the suited fidelity level and choosing the best proto-
typing method. Prototypes can be characterized in
terms of fidelity with respect to the final system. In
particular, McCurdy et al. [12] identified 5 dimensions
along which fidelity can be defined: 1. Visual refine-
ment, whose extremes are hand-drawn sketches vs pixel-
accurate mock-ups; 2. Breadth of functionality, corre-
sponding to the number of implemented features; 3.
Depth of functionality, which is the level of implemen-
tation detail of each feature; 4. Richness of interactivity,
defined in terms of the set of interactive elements cap-
tured and represented in the prototype; and 5. Richness
of data model, related to how much the data manipu-
lated by the prototype is representative of the actual
domain. Taranta is a very effective tool that supports
mixed-fidelity prototypes that can be built very quickly.
For example, prototypes of dashboards with poor vi-
sual fidelity, but wide breadth, high depth, richness of
data and of interactivity. This kind of mixed fidelity
prototype are very effective for UIs of control systems.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

Software

User Interfaces & User Experience

FR2BCO02

1651

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



• Usability Testing. Usability Testing is an empirical
technique aimed at gathering data to identify usability
deficiencies existing in a product. The sessions are car-
ried out by a facilitator using the “think aloud” protocol
and observing the participants while they perform some
tasks via the UI. The participant is asked to describe
what they are doing and what outcome they expect when
certain actions are performed as well as verbalise their
doubts or feelings while using the UI. The facilitator
assures the quality of the data by guiding the partici-
pants without accidentally influencing their behaviour.
The choice of the tasks is critical and reflects activities
that would be realistically performed by the user in real
life. Based on the observed behaviour the facilitator
identifies the strengths and weaknesses of the UI un-
der test and then translates them into recommendations
for the next iteration. Usability testing is an extremely
powerful and cheap technique to revise and improve
the utility and usability of a specific design [13].

APPLICATION OF THE PROCESS TO UIs
OF THE CSP.LMC

The goal of this study was to incrementally create and
quickly validate a set of UIs that can support the monitoring
and control of the CSP.LMC in AA0.5 through the adoption
of a Lean UX approach tweaked to our specific needs when
necessary. In particular, we had to take into account that:
the user is also the dashboard designer; the teams’ work is
planned at PI boundaries which makes it possible to squeeze
in the sprints only small changes; and we targeted a specific
time frame in the near future to contain the scope of work and
create dashboards that can be relatively stable for a certain
amount of time. The Lean UX method is characterised by
very fast learning cycles that allow for frequent validation
and adaptation of proposed design solutions. The process
we followed is articulated in stages:

• Discovery phase: a conceptual step to identify the
target user roles and implementation time horizon. This
allowed us to analyse the most relevant use cases and
to derive the dashboards’ conceptual model;

• Implement-Revise-Adjust phase: a step that included
the realization of a set of dashboards and a usability test-
ing session followed by a debriefing meeting and by the
adaptation of the UI as per the received feedback. When
it wasn’t possible to immediately implement changes,
they were added as UX technical dept stories to either
the CSP.LMC or the Taranta backlogs.

The study has been possible thanks to the involvement of the
following participants: one person with experience in UX to
guide the process and some design choices, a CSP.LMC de-
veloper who also acted as the main dashboard designer and
creator, and two CSP.LMC developers and the team’s Prod-
uct Owner involved as participants in the usability testing
sessions. Moreover, an expert in usability testing conducted
the design validation step. All the sessions were recorded
to allow for future reviews and notes were taken during the

probing sessions to capture the interviewer’s observations,
the user’s opinions and feelings and the user’s suggestions.
These sessions lasted one hour each and were followed by a
debriefing session during which the testing expert, the UI
developer and the UX person discussed what was learnt and
identified immediate and future improvements. Paper notes
and rough sketches have been a useful support during the
entire process. Taranta was the only tool used to develop the
dashboards.

Discovery Phase Methodology and Results
The goal of this phase was to reach a consensus between

the UI expert and the dashboard developer on the scope of
work and the process to be followed to reach the result. In
our specific situation, the dashboard creator was also a rep-
resentative of the target user and played both roles in the
process. Following the semi-structured interview technique
it has been possible to characterise the target user role, the
time frame and the main use cases that the dashboard had to
support. The target user role has been characterised follow-
ing Constantine and Lockwood’s checklist [11]. It represents
a system expert such as CSP.LMC developers and testers.
Details are provided in the Appendix.

The identified focal use cases are: to be aware of the
current status of the CSP.LMC, its subsystems and the as-
sociated subarrays; to be able to interact (command and
monitor) with the subarrays independently to perform all the
happy path commands (from switching on the subsystems to
execute a scan); to receive the monitoring information rele-
vant for verifying that the system transitioned to the expected
states; to access lower level information on subsystems and
subarrays; to be able to recover from faulty conditions; to
run sequences of commands; to be able to debug failures; to
be able to quickly create short-lived custom dashboards for
diagnosing specific problems.

Starting from this material, we created a set of hypothe-
ses that had to be probed into during the usability testing
sessions. They included the following:

1. The layout should be optimised for a relatively large
monitor and the use of a mouse and keyboard as this is
often the workstation layout for developers.

2. Given the level of expertise of the target user and the
specificity of the use cases, the structure of the dash-
boards, naming conventions and mental model should
not diverge greatly from the underlying system. This is
normally not a good practice but it is reasonable in the
case of low-level engineering UIs used to support the
development and debugging of the code implementing
the specific devices being monitored. In fact, adding an
abstraction level that isn’t needed may have the opposite
effect.

3. The top-level dashboard should act as an information
entry point and allow for assessing the overall state
of the CSP.LMC, its subsystems and subarrays at a
glance. It should also support the drill-down capability
by providing a means to reach other dashboards.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

FR2BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1652

Software

User Interfaces & User Experience



4. Commands should always be available and grouped in a
panel separate from different dashboards. The position
of the commands panel shouldn’t be fixed to allow for
more flexibility in supporting user preferences. More-
over, if the control panel is placed on the side of the
dominant hand, the interaction time can be reduced by
minimising the length of the cursor movement. Direct
interactions with the UI will happen through this panel
most of the time.

5. Tables are the best compromise between clarity and
effectiveness when a finite number of state attributes
needs to be shown and compared for each device. Al-
though tables may become cumbersome when the num-
ber of devices is very big, they allow the user to ef-
fectively compare values across different devices and
identify outliers when the number of rows is limited.
This is the case for the current and short-term imple-
mentation of CSP.LMC. In the long run, CSP.LMC will
comprise many more devices and a different design ap-
proach should be followed.

6. The timing at which key devices perform a certain state
transition is critical for decision-making during the
supervision of a system and should be part of the top-
level dashboard.

7. Lower-level dashboards should provide all the infor-
mation needed when debugging CSP.LMC. We don’t
aim at creating detailed dashboards for the subsystems
because they’ll be created by the responsible teams for
AA0.5.

8. Taranta supports the fast implementation and revision
of dashboards.

During a preparatory session focused on testing, the val-
idation criteria to be satisfied in order to consider the as-
sumptions solid have been fleshed out. The task assigned to
the developers during the probing session was to perform
some exploratory testing [14] with the aim of discovering
potential flaws in the CSP.LMC code. In the case of the
Product Owner (PO), the session would focus on the ability
and easiness to drive the system under test to complete all
the steps required to perform a scan and interpret the results.
The difference in the proposed tasks reflects the difference
in the two roles. Although assuming a detailed knowledge
of the CSP.LMC is still appropriate, the goal of the PO
while using the UIs may differ from those of the developers.
Rather than debugging the software the PO is likely more
involved in demoing and validating the subsystem behaviour.
Moreover, the PO has generally a less detailed knowledge of
implementation aspects but a more accurate systemic view
of future developments. In this sense, we are increasing a
bit the scope of work to include a slightly different role and
we expect the UI to be missing some functionalities.

It has to be noticed that going into the details of the various
Taranta widgets and of the Tango devices that had to be
configured wasn’t necessary at this stage, given the high
expertise of the designer in both CSP.LMC and Taranta.

Implement-Revise-Adjust Phase

After conceptualising the UIs we followed a typical agile
method: first of all we created a working prototype that
consisted of one control panel, one high-level monitoring
panel and 2 lower-level interfaces to capture detailed views of
subarrays and of CSP resources and capabilities. Secondly,
we conducted the usability tests to validate our assumptions
and third, we implemented the changes. The 2 sessions with
the developers used the original design while for the session
with the PO small improvements have been made to the
dashboard. Regarding the original hypotheses, we could
derive the following conclusions:

Hypotheses 1, 2 and 3 are overall verified for the devel-
opers. In all cases, the provided information was clear and
sufficient to test the CSP.LMC and the interaction with the
subsystems. Less technical roles or new developers may find
it beneficial to be presented with links to the documentation
or diagrams that guide them to perform the correct sequence
of actions and help to correctly interpret the combination
of state values. Moreover, important quantities to be moni-
tored in the future have been suggested. An example is data
packets being sent/received along with the packet rate and
the number of dropped packets. A possible effective visual-
ization includes a time-based chart where peaks, lows, and
sloping trends could be quickly spotted and associated with
possible problems. Finally, the assumption on the screen real
estate setting may not be always valid for non-development
roles that could sometimes use their laptop. A different
layout should be considered to better support this scenario.

Hypothesis 4: in those cases when the user was interact-
ing with the dashboard directly, they naturally positioned
the control panel on the side of their dominant hand, sup-
porting our initial assumption. The separation of the control
panel from the other UIs was received well by the developers.
More quantitative data should be gathered to measure the
effective reduction in the interaction time. Following the
received feedback the sequence of commands has been ad-
justed and a few text fields have been added to better support
less experienced users. Adding tooltips to Taranta is felt as a
good way to ease the understanding of the UI by displaying
informative text.

Hypothesis 5, 6 and 7 have been verified. There have
been refresh issues in one session and the data weren’t up-
dated in real time. This greatly diminished the usability of
the UI causing some frustration especially when using the
timeline widget to visualise the timing of state transitions. A
ticket was created to investigate the problem. As the system
is growing additional information will have to be added to
the detailed dashboards in the medium term but the current
content is sufficient for AA0.5.

Hypothesis 8 Taranta measured up to the expectations in
terms of easiness of use and modifiability of the UI. Chal-
lenges can be faced in case of missing widgets or function-
alities as their implementation needs to be prioritised at a
higher level in the 3-month cycle.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

Software

User Interfaces & User Experience

FR2BCO02

1653

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: First implementation of CSP.LMC monitoring dashboard. The command panel is visualised on the right.

Additionally, the usability testing sessions allowed us to
uncover some pain points of the design. They spanned all
areas from visualization enhancement and coherence of the
information to code implementation improvements. For ex-
ample, using multiple tables showing a different set of states
caused columns to be misaligned which reduced their read-
ability. The problem was solved by rearranging the devices
displayed in different tables as well as the position of the
tables themselves. The visualization gained in simplicity. A
second observation pointed out the presence of inconsisten-
cies: in navigating between dashboards, it wasn’t possible
to reach the main monitoring boards from the lower-level
ones; in the naming conventions, mixed use of uppercase
and lowercase for the same family of attributes, different
ways of indicating missing values (null, no data etc), in the
implementation of the same command for different devices.
The missing links have been added and CSP.LMC code im-
provement items were identified and included in the backlog.
Similarly, bugs as well as suggested improvement tickets,
such as increased logging functionalities, were created in
Taranta backlog when necessary. Overall, the current de-
sign leaves the screens real estate relatively empty. This
is because we didn’t try to optimise the space but rather to
organise the information to support the major tasks. An
alternative design could be considered that increases the
information density in each dashboard at the probable cost
of breaking consistency in the current drill-down approach.

Figure 1 shows the first implementation of the top-level
monitoring dashboard. It shows the relevant states of the
CSP.LMC devices, namely the CSP controller, the subarrays
and capabilities, and of one of the subsystems, the CBF,
and its subarrays. Since no commands have been sent and
the system is in its initial state, the state transition plot at

the bottom is empty. The command panel is visible on the
right side of the image. It encompasses two distinct areas
dedicated to the controller and to the subarray, respectively.
(TBC)

CONCLUSIONS
In this paper, we discussed our approach to include Lean

UX techniques in the development of CSP.LMC dashboards
for the first SKA release, AA0.5. The CSP system to be
represented will comprise of the CBF and PST in its initial
shape. The CSP.LMC element will act as a potential entry
point in debugging problems in the lower-level signal chain
(excluding TM). In order to support this activity, we decided
to create dedicated dashboards that allow a comprehensive
view on the state of the CSP devices. Thanks to the adoption
of some Lean UX techniques it was possible to detail the
characteristics of a specialist interacting with the system un-
der consideration and the main use cases that the dashboards
should support. Expanding the discussion to the PO, we
enriched the initial UI with some explanatory tips and iden-
tified the way forward to support additional roles at AA0.5.
We believe that the current set of dashboards could be em-
ployed in a usability testing session with Array Integration
and Verification personnel to verify the need for additional
use cases or different ways of looking at the system.

Although the use of Taranta greatly simplified the design
step, we will find the discovery phase beneficial because
it fosters a deeper understanding of the boundaries within
which the user operates along with goals and motivations.
The usability testing sessions proved to be a effective tool
to uncover gaps, improvements, suggestions regarding both
the implementation of the dashboards and their design, the
available widgets and the implementation of the underlying

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

FR2BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1654

Software

User Interfaces & User Experience



system. All in all, we believe that the adopted approach is
sustainable for a team whose primary focus isn’t the devel-
opment of UIs but that can greatly benefit from their use
during the everyday work.

APPENDIX
User role: CSP.LMC developer (or any subsystem expert

such as code maintainers or testers)
Responsibility: to develop, test, validate and debug

CSP.LMC code.
Context (within which the role is played):
• Overall job, workflow or activity within which the role

is played: CSP.LMC developers are in charge of im-
plementing and testing new functionalities and trou-
bleshooting problems related to the subsystem.

• Physical environment: their own office with their own
workstation. Often, this includes a laptop and a second
screen.

• Social situation: mostly alone.
• Relationship with indirect users in role: direct interac-

tion with other developers both in the team and belong-
ing to other SKA teams in case of troubleshooting.

• External sources of information: the screen of their PC.
• Background in terms of training, education or experi-

ence: experienced SW developers, graduated, PHD is
not strictly required. Proficient in problem-solving.

• System knowledge is expected or required: basic under-
standing of SKA project and its components is required.
Good understanding of CSP.LMC scope and function-
alities.

• Domain knowledge expected or required: software de-
velopment. Telescopes is a bonus.

• Distribution of user skills in terms of novice, interme-
diate or expert usage patterns: moderate to expert.

• Required or discretionary nature of role: regular job.
Characteristics (of performance of role):

• Orientation, attitude or emotional state: CSP.LMC de-
velopers are responsible of the quality of the code they
develop.

• Frequency with which role is played: normal working
hours.

• Regularity with which the role is played: the role is
played regularly every day.

• Intensity of interaction in the role: increased activ-
ity when the troubleshooting is particularly difficult or
when testing new functionalities.

• Duration of the interaction: varies with the develop-
ment stage.

• Complexity of the interaction: the complexity of the
interaction may vary with the task performed. For
example, trying to find to what extent the CSP.LMC
behaviour leads to an overall bug that causes a fail-
ure while running system/integration tests can increase
complexity and stress levels.

• Predictability of interaction in the role: some tasks
are repetitive, for example, some verification or testing

procedures. In other cases, the developer autonomously
decides the best strategy to follow to test the system.

• Volume and complexity of information handled in the
role: relatively small amount of information (gener-
ally the subsystem). Complexity is mainly due to the
analysis of the root causes of problems.

• Direction of information flow to or from the system:
the information flows from the system to the developer
when collecting information. The flow is in the op-
posite direction when performing tests or driving and
querying the system during testing.

Usability requirements:
• Ease of learning and memory retention: nothing spe-

cific.
• Adaptability: An adaptable UI can be designed that

provides new ways to explore related failures and helps
the CSp.LMC developers to quickly relate information.
It is likely that a degree of customization would be very
welcome (at least in terms of colour themes, font size,
toolbars, docking panes but also in defining colour-
coded labels or tags).

• Fault tolerance/protection: Appropriate confirmation
of actions may be needed to avoid making slips. Less
experienced users may benefit from some mechanism
that prevents them from sending sequences of com-
mands that may lead to undesired states.

• Accuracy: the accuracy of the information that is dis-
played is very important because it could impact the
efficiency with which the CSP.LMC developer under-
stands the cause of a problem.

• Completeness: the CSP.LMC developer has to be able
to collect all the information he needs to perform a
detailed analysis of the status of a subsystem.

• Efficiency of the user: irritation and frustration may
arise if the interaction with the UI is too slow or cum-
bersome.

• Controllability: CSP.LMC developers need to be able
to drive the system in any desired state especially when
performing exploratory testing or debugging activities.

• Reliability of the system: developers need to trust the
system and therefore the UI should present only relevant
information, in a very clear, unambiguous and complete
way, with the option to get more relevant details if
needed. Moreover, developers should be made aware
if the system is busy processing or stuck in a process.
This would increase awareness and allow the user to
take corrective actions to for example abort the process.

• Attention: needs to be managed while performing some
tasks such as discover when a certain thing started to
deviate from the nominal behaviour.

REFERENCES
[1] SKA Observatory, https://www.skao.int/en

[2] Scaled Agile, Inc., SAFe for Lean Enterprises 6.0,
https://www.scaledagileframework.com/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

Software

User Interfaces & User Experience

FR2BCO02

1655

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



[3] J. Gothelf and J. Seiden, Lean UX: Designing Great Products
with Agile Teams. O’Reilly Media, Inc., 2016.

[4] Taranta, https://taranta.readthedocs.io/en/
latest/

[5] Tango Controls, https://www.tango-controls.org/
[6] G. Marotta, E. Giani, I. Novak, A. Söderqvist, and C. Baffa,

“Software design for CSP.LMC in SKA”, in SPIE Astron.
Telesc. Instrum., Montréal, Québec, Canada, 2022.
doi:10.1117/12.2630140

[7] Jive, https://shorturl.at/ewAX5
[8] M. Eguiraun et al., “Taranta, the No-Code Web Dashboard in

Production”, in Proc. ICALEPCS’21, Shanghai, China, Oct.
2021, pp. 1017–1022.
doi:10.18429/JACoW-ICALEPCS2021-FRAR01

[9] Interaction Design Foundation,
https://www.interaction-design.org/

[10] K. Holzblatt, J.B. Wendell, and S. Wood, Rapid Contextual
Design. Morgan Kaufmann, 2005.
doi:10.1016/B978-0-12-354051-5.X5000-9

[11] L. Constantine and L. Lockwood, Software for use: a practi-
cal guide to the models and methods of usage-centered design.
Addison-Wesley, 1999.

[12] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, and A.
Vera., “Breaking the fidelity barrier: an examination of our
current characterization of prototypes and an example of a
mixed-fidelity success”, in CHI 2006, New York, NY, 2006,
pp. 1233–1242. doi:10.1145/1124772.1124959

[13] J. Rubin and D. Chisnell, Handbook of Usability Testing,
Wiley, second edition, 2008.

[14] E. Hendrickson, Explore it! Reduce risk and increase confi-
dence with exploratory testing. The Pragmatic Programmers,
2013.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2BCO02

FR2BCO02

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1656

Software

User Interfaces & User Experience


