
A PHYSICS-BASED SIMULATOR TO FACILITATE REINFORCEMENT
LEARNING IN THE RHIC ACCELERATOR COMPLEX*

L. K. Nguyen†, K.A. Brown1, M.R. Costanzo, Y. Gao, M. Harvey, J. P. Jamilkowski, J. T. Morris,
V. Schoefer, Collider-Accelerator Dept., Brookhaven National Laboratory, Upton, NY, USA

1also at ECE Dept., Stony Brook University, Stony Brook, NY, USA

Abstract
The successful use of machine learning (ML) in particle

accelerators has greatly expanded in recent years; however,
the realities of operations often mean very limited machine
availability for ML development, impeding its progress in
many cases. This paper presents a framework for exploit-
ing physics-based simulations, coupled with real machine
data structure, to facilitate the investigation and implemen-
tation of reinforcement learning (RL) algorithms, using the
longitudinal bunch-merge process in the Booster and Al-
ternating Gradient Synchrotron (AGS) at Brookhaven Na-
tional Laboratory (BNL) as an example. Here, an initial
fake wall current monitor (WCM) signal is fed through a
noisy physics-based model simulating the behavior of
bunches in the accelerator under given RF parameters and
external perturbations between WCM samples; the result-
ing output becomes the input for the RL algorithm and sub-
sequent pass through the simulated ring, whose RF param-
eters have been modified by the RL algorithm. This process
continues until an optimal policy for the RF bunch merge
gymnastics has been learned for injecting bunches with the
required intensity and emittance into the Relativistic
Heavy Ion Collider (RHIC), according to the physics
model. Robustness of the RL algorithm can be evaluated
by introducing other drifts and noisy scenarios before the
algorithm is deployed and final optimization occurs in the
field.

INTRODUCTION AND MOTIVATION
Interest in machine learning (ML) for use at particle ac-

celerator facilities has rapidly expanded over the years, and
accelerator scientists and engineers engaging in ML con-
tinue to identify and deliver on important applications [1].
However, the time and resources needed for ML develop-
ment and model training can be prohibitive. At
Brookhaven National Laboratory (BNL), for example, the
bunch merge process in the Booster and Alternating Gradi-
ent Synchrotron (AGS) rings has been identified as a po-
tentially high-reward area for ML optimization due to the
criticality of good bunch merging to operations. Despite
this, competing priorities and lack of machine availability
have impeded investigations. In particular:

1. Booster & AGS are part of the accelerator chain for
multiple programs, and they are often in operational
use when not supplying the Relativistic Heavy Ion
Collider (RHIC) with beam. Real machine time for
ML development is therefore very hard to come by.

2. Any machine downtime is generally allotted to
maintenance and/or needed repairs. Meanwhile, part
of the ML development cycle is purely software-re-
lated (e.g., debugging). This makes real machine time
for ML development expensive both in terms of finan-
cial costs and opportunity costs.

Figure 1: Real mountain range data for a bunch merge in
Booster.

Some ML approaches, such as reinforcement learning
(RL), do not learn machine parameters, but rather environ-
ments—making them amenable to other development
paths. The importance and under-explored benefits of RL
for accelerator optimization problems has already been rec-
ognized by the community [1]. We therefore pursued a
framework for investigating RL optimization by replacing
the accelerator, attendant diagnostics, and controls with a
physics-based simulator mimicking real machine data
structures and communications. Such a simulator was cre-
ated for Booster and AGS using the Python programming
language.

ENVIRONMENT TO SIMULATE
Bunches merge in Booster for injection into AGS, and

bunches merge in AGS for injection into RHIC. To diag-
nose a merge, a wall current monitor (WCM) is used. The
WCM generates a voltage vs. time signal in response to
passing bunches. Subsequent signal traces are stacked on
an oscilloscope to create a so-called mountain range plot;
see Fig. 1 for an example from Booster. A certain number
of accelerator periods separate each trace, and this number
can vary depending on the merge. It is typically between
100 and 200 turns.

In addition to time between acquisitions, captured moun-
tain range data typically varies with respect to oscilloscope

* Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy.
† lnguyen@bnl.gov

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

FR2AO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1630

System Modelling

Digital Twins & Simulation

settings, such as sampling rate, timebase, and trigger delay.
The measurement process itself imparts noise.

Bunch merging is accomplished via RF gymnastics with
different RF harmonics—but not necessarily different RF
cavities. For example, this is generally the case in Booster,
where only two physical cavities exist, but RF supplies are
switched mid-merge to include a greater number of har-
monics. Voltage and phase are the available controls for a
given harmonic, and changes to these are made by specify-
ing the device name, device parameter, and value in the
Controls System. There will be some deviation between the
set value and the value that appears on the cavity.

Booster and AGS naturally differ from each other in
terms of RF, beam energy, slip factor, and other machine
parameters. Settings for the same machine also vary for
different merge patterns, species, and/or energies. How-
ever, both machines, regardless of configuration, satisfy
the general concept of a bunch-merging ring diagnosed by
a WCM and controlled by a prescribed communications
syntax, as shown in Fig. 2.

THE SIMULATOR
Figure 3 shows the workflow of the simulator, which in

fact comprises two distinct simulated components working
in concert: a physics-based simulator and a diagnostics
simulator. The former operates in 2D phase space and

tracks individual particle movement in response to simu-
lated RF cavities, evolving the beam with every turn
through the accelerator in accordance with the well-known
longitudinal phase-space mapping equations [2]: 𝛿ାଵ ൌ 𝛿 ఉమா ሺsin𝜑 െ sin𝜑௦ሻ (1a) 𝜑ାଵ ൌ 𝜑 2𝜋ℎ𝜂𝛿ାଵ (1b)

The latter, meanwhile, operates in the time domain and at-
tempts to replicate as faithfully as possible the output of a
real WCM during a simulated merge. The diagnostics sim-
ulator does not itself contribute to the physics model gov-
erning the merge. The overall effect is a realistically noisy
simulated environment that encapsulates a proven physics
model.

Interaction Paradigm
The physics-based portion of the simulator begins by

taking supplied values for voltage and phase (upper right
corner of Fig. 3,) to be substituted into the mapping equa-
tions [Eqs. (1a) and (1b)]; variable noise can be added to
the RF cavities and/or bunches to simulate the behavior of
a real machine, which can exhibit some deviation from
nominal values. The physics-based simulator then passes
its phase space projection to the diagnostics simulator to
inherit WCM noise and timing characteristics. This voltage
vs. time signal finally reaches the user or agent program for
decisions regarding future voltage and/or phase values.

In this way, the two orange blocks allocated to user/RL
interaction in Fig. 3 are designed to be interchangeable to
cut down on time spent developing in the real environment
(left side of Fig 3).

Programming Paradigm
The above-described flexibility, workflow, and interac-

tion paradigm are well suited for object-oriented program-
ming (OOP). OOP is supported by many programming lan-
guages, but the simulator’s intended purpose of facilitating
ML/RL made Python the natural choice among them.

The simulator’s objects are discussed in more detail in
the next section.

Figure 2: Cartoon representation of an accelerator with
WCM, RF cavities (arbitrary number), and input/output.

Figure 3: Bunch merge simulator workflow. The simulator is designed so that user/RL interaction (orange box) devel-
oped in the simulated environment (right) may be implemented in the real environment (left) without modification.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

System Modelling

Digital Twins & Simulation

FR2AO04

1631

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

CODE OVERVIEW
The simulator is handled by four objects, although one

of the objects—the RF Cavity object—belongs to an in-
ner class of the Accelerator class and is only defined
as such for conceptual and organizational purposes.

Beam Object
The Beam object contains the 2D array describing the

beam in 2D phase space (momentum spread vs. phase).
Figure 4(a) shows an example of a plotted Beam object
comprising six 80-nanosecond bunches constituting one
full orbit (i.e., 12π radians in phase) at 400 kHz revolution
frequency, in the base configuration (i.e., no covariance or
added noise). Each bunch contains 10,000 particles distrib-
uted according to a multivariate Gaussian distribution.

Instantiation arguments The object is created by
passing the following variables to the Beam class: particles
per bunch, total number of bunches in orbit, signal strength
of the bunches on the WCM, bunch length, momentum
spread, covariance, particle number variation, bunch
length variation, bunch timing variation, phase resolution,
and Gaussian filter sigma (σ).

Noise parameters The covariance and bunch varia-
tions can be combined arbitrarily to create different non-
ideal beams. Figures 4(b)-(e) show the effect of these

settings on the created Beam object. The availability of
these options form part of the robustness-testing capability
of the simulator.

Phase space to time signal (beam projection) The
first step in transforming the phase-space representation of
the beam into a time signal is the projection onto phase.
This step is achieved numerically by generating a histo-
gram. The phase resolution determines the number of bins
used for the particle histogram, which lends a natural de-
gree of noise. The histogram is turned into a smooth func-
tion by passing it through a Gaussian filter. Figure 5 shows
the effect that the Gaussian filter sigma has on the resulting
smoothed function. A larger sigma overcomes the noise in-
curred when a sub-optimal number of bins and/or low num-
ber of particles is used, but its effect is equivalent to ringing
in the oscilloscope. The combination of these settings must
therefore be chosen appropriately when replicating an en-
vironment. The resulting 2D array is stored as the attribute
phase_signal.

From here, it is straightforward to convert phase to time
by the relationship 𝑇 ൌ 1/𝑓 and knowing the frequency
corresponding to 2𝜋 of the RF bucket. That is, if 𝜑 is the
value along the x-axis in phase, then the value along the x-
axis in time is given by 𝑡 ൌ 𝜑/𝜔ோி , where 𝜔ோி ൌ 2𝜋𝑓ோி.
The y-axis is also rescaled via the signal strength parame-
ter. The resulting 2D array is stored as the attribute
raw_time_signal.

Figure 4: (a) Beam object with no covariance or added bunch variation (noise). The same object is also shown with (b)
non-zero covariance, (c) non-zero particle number variation, (d) non-zero bunch length variation, and (e) non-zero bunch
timing variation.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

FR2AO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1632

System Modelling

Digital Twins & Simulation

This entire process is handled by the collapse()
method of the Beam object and is depicted in Fig. 6.

Other methods In addition, there is a
beamLoss(loss) method that causes a global loss of
particles and a phaseShift(shift) method that
uniformly shifts the bunches in phase inside the RF
buckets. The latter can be used to simulate a change in orbit
length, for example.

WallCurrentMonitor Object
The WallCurrentMonitor object imparts acquisi-

tion noise and other simulated scope properties to the raw
time signal of the Beam object for a more authentic output.
It is also responsible for creating the mountain range plot.

Instantiation arguments The object is created by
passing the following variables to the
WallCurrentMonitor class: sampling rate, number of
samples per acquisition, turns between acquisitions,
number of acquisitions, trigger delay, bit resolution of
scope, and acquisition noise.

Simulated measurement and the accumulator
Whenever the object method measure(beam) is called,

Gaussian noise is added to the raw time signal of the passed
Beam object and stored as another Beam attribute
measured_time_signal (also a 2D array). See Fig. 7
for the case when rms acquisition noise is set to 0.4 mV.

Figure 5: Phase-space projection via histogram. The particle histogram becomes a smooth function by applying a Gauss-
ian filter. The two bottom plots differ only in the sigma value used for the filter (larger sigma means smoother function).

Figure 6: Converting the phase-space projection in phase to time. In this example, a 400 kHz revolution frequency is
used, which equates to 2.5 μs for a full orbit and agrees with the plot on the right. The instantiation argument
signal_strength rescales the y-axis and is here equal to 20 mV.

Figure 7: The effect of the measure(beam) method of
a WallCurrentMonitor object. The bottom plot is a
closeup of the first bunch in the top plot.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

System Modelling

Digital Twins & Simulation

FR2AO04

1633

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Every simulated measurement is stacked in the
WallCurrentMonitor attribute accumulator.
This attribute can be called if an RL policy would like to
take history into account.

Mountain range plot The display() method plots
all the data stored in the accumulator for the appearance of
a genuine mountain range plot. Example plots are shown
in the Results section.

Other methods In addition to measure(beam)and
display(), there is a clear() method for restarting
the accumulator for a new WCM display.

Accelerator and RF Cavity Objects
The physics simulation engine is found in the

Accelerator object. The difference between a Booster
simulator and an AGS simulator is determined here.

Instantiation arguments The Accelerator object
and its child Cavity object are created simultaneously by
passing the following variables to the Accelerator
class: species, particle rest energy, particle charge number,
machine name, machine energy, slip factor, revolution fre-
quency, merge harmonics, initial RF voltages, voltage de-
vice/parameter names, initial RF phases, phase device/pa-
rameter names, voltage noise, and phase noise.

Harmonics All harmonics used in the merge are used
to instantiate the Accelerator object and are implicitly
given their own cavity in simulation space. However, since
a lump-element model is used for simplification, a more

accurate description might be that there exists one cavity
capable of sustaining all harmonics without distortion.

Phase-space mapping equations Equations (1a) and
(1b) must be modified to handle a superposition of RF
fields. The equations used instead are 𝛿ାଵ ൌ 𝛿 ∑ ఉమா ൫𝑠𝑖𝑛 𝜑, െ 𝑠𝑖𝑛 𝜑௦,൯ሺℎሻ (2a) 𝜑ାଵ ൌ 𝜑 2𝜋ℎே𝜂𝛿ାଵ (2b)

where 𝑖 corresponds to matching indices in the
Cavity.harmonics, Cavity.voltages, and
Cavity.phases arrays, and ℎே is the base harmonic
used for preserving scale. With the lump-element
simplification, 𝜑௦ for each harmonic can be approximated
by 𝜑. All terms are always present in the summation in the
code; harmonics not participating in the merge for a given
iteration simply have their voltage set to zero.
 Figure 8(a) shows the expected phase-space ellipses for
on-momentum particles distributed in phase when iterating
through the simulator with constant RF conditions. Figure
8(b) demonstrates the phase-wrapping required for full
orbit tracking. These investigations were performed first to
prove the soundness of the simulator’s baseline behavior.

Cavity noise If enabled, voltage and cavity noise is in-
serted when the phase-space mapping equations are ap-
plied. Nominal values are stored as attributes.

Attributes and methods Accelerator and
Cavity object attributes and methods central to the
simulation engine are discussed in the next sections. In
addition to those, there are unloadCommands(),
reset(attribute), getValue(parameter), and
setValue(parameter,value) methods.

Figure 8: (a) Expected constant phase-space ellipses for
on-momentum particles in a constant RF environment. (b)
Phase wrapping for full orbit tracking.

Figure 9: Controls system names and merge program used
for simulation. The simulator contains no built-in names
but rather receives them from the user.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

FR2AO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1634

System Modelling

Digital Twins & Simulation

CONTROLS ARCHITECTURE
When the Accelerator object is created, its class is

passed two lists of controls system names: one with the de-
vice name and parameter corresponding to the voltage con-
trol of a given harmonic and another for the phase control.
The syntax for each element in the list is therefore another
list of the form
[‘Device name’, ‘Device parameter’]

The instantiation process packages both lists as the attrib-
ute Cavity.params. Whenever a search is performed
on params (as when a command is sent), the result is
mapped to the appropriate element in voltages or
phases, which are themselves mapped to a value in
harmonics. In this way, the simulator possesses no built-
in names but rather accepts whatever names are specific to
the controls system of the simulated environment.

When creating the merge program, the same syntax is
used for specifying the control; it is sent together with the
new setpoint and the time into the merge at which the new
setpoint must be achieved. Any changes to voltages
and/or phases are used in subsequent iterations.

Figure 9 shows the dummy controls system names used
in the example simulation, followed by an abbreviated ver-
sion of the merge commands, to illustrate the controls ar-
chitecture. The merge commands are lifted from Ref. [3],
albeit with a reduction in the time values by a factor of 10
to achieve an overall 72-millisecond merge, rather than a
720-millisecond merge. Figure 10 summarizes the data
structure occurring at the input and output of the simulator
once all the above code is implemented.

SIMULATION AND RESULTS
The code for a user to run the simulator is provided in

Fig. 11. The advantages of OOP and the chosen class de-
sign are clear from the conciseness and readability of the
code. Instantiation arguments are initialized in an

initialization block where units and variable formats are
documented. Following instantiation, the merge program is
loaded via the loadCommands(commands) method of
the Accelerator object (here named machine). The
WallCurrentMonitor object (here named wcm) in-
vokes its measure(beam) method to take the first sim-
ulated measurement and thus begin a WCM display stack.
The actual simulation block consists of only three lines: the
for loop dictating the number of WCM measurements, a
call to the simulate(beam, turns) method of the
Accelerator object [turns is the number of steps
through Eqs. (2a) and (2b)], and another measurement.
Lastly, the simulated mountain range plot is displayed.

Inside the loadCommands method, the time in the
command line is converted to turn number based on the
revolution frequency. Unique turn numbers populate an
action list. It is important to remember that the RF
commands are not completed instantaneously at the
specified time; rather, values are ramped up or down to
achieve the next setpoint at the specified time. Thus, for
every element in action, there is a row in Cavity
attributes v_increment and ph_increment

Figure 10: Summary of data structure.

Figure 11: Simulator code as implemented by user.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

System Modelling

Digital Twins & Simulation

FR2AO04

1635

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

containing the incremental voltage value and incremental
phase value, respectively, for each harmonic to reach the
next setpoint as specified. If a control is not involved in the
ramp for that turn, its incremental value is obviously zero.
Note that these incremental values can be used to constrain
merges to realistic ramps.

Once inside the simulate method, Eqs. (2a) and (2b)
are applied once per iteration, signaling one turn. Before
proceeding to the next iteration, v_increment and
ph_increment are added to voltages and phases,
respectively, so that subsequent iterations are responding
to the correct RF conditions. The running turn and line
attributes of the Accelerator object keep track of the
position within the action list and incremental value ar-
rays.

Figure 12 shows the results of the simulation (i.e., output
of display method) for two different initial bunch trains.
A surprisingly small number of particles achieved these re-
sults: only 2,400 distributed equally among the initial
bunches. This shows the benefit of employing a Gaussian
filter in the projection step. Approximately 28,000 turns
were simulated, with a total compute time of about 20
minutes when performed on a CPU utilizing one core. Alt-
hough mountain range data for an identical merge could
not be found, the real 3-to-1 Booster merge shown in
Fig. 13 is illustrative of the success of the simulator.

CONCLUSION
We have created a physics-based simulator in Python

that mimics our bunch merge environment and diagnostics
by combining longitudinal phase-space mapping and
phase-space projection for time signal replication. A diag-
nostics simulator is included in the framework. The result-
ing code used to run the simulator by a user is minimal and
comprehensible thanks to OOP and careful design.

Due to its authentic data and controls structure, as well
as the options for injecting noise, the simulator can be used
for RL development for improving bunch merges. Other
envisaged uses include operator training, machine trouble-
shooting, and other systems investigations.

Regarding future work, the simulator will continue to be
expanded beyond the presented capabilities, including the
option to accept console input rather than use a loaded
merge program. This is expected to improve RL develop-
ment/performance since the algorithm would not need to
wait until the very end of the merge for feedback. It is also
likely that the simulate method (or a version of it) will
be rewritten to perform the computationally intensive
phase-space mapping portion in C for full-scale simula-
tions (>>10,000 particles per bunch) when GPUs are insuf-
ficient/unavailable.

REFERENCES
[1] K. Brown and S. Biedron, “Summary of the 3rd ICFA Beam

Dynamics Mini-Workshop on Machine Learning
Applications for Particle Accelerators”, in Proc. IPAC'23,
Venice, Italy, May 2023, pp. 4440-4443.
doi:10.18429/jacowipac2023thpl010

[2] S. Y. Lee, Accelerator Physics, Singapore, World Scientific
Publishing, 2019.

[3] C. J. Gardner, “Preservation of the distribution of beam
particles with respect to longitudinal oscillation amplitude in
a 3 to 1 bunch merge,” Brookhaven National Laboratory,
Upton, NY, USA, Rep. BNL-212078-2019-TECH C-
A/AP/625, Sept. 2019.

Figure 12: Simulation results using a known Booster merge program.

Figure 13: Real mountain range data for a 3-to-1 Booster
merge for comparison.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-FR2AO04

FR2AO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1636

System Modelling

Digital Twins & Simulation

